Ace(ren

Joze Korelc

University of Ljubljana
Ljubljana, 2012

Slovenia

AceGen code generator

AceGen Contents

ACCGEN TULOKHIAIS ...ttt 8
ACECGEN PIrEfACEoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 8
ACEGEN OVEIVIBW ...t 9
INTrOAUCTION ... 10
ACCGEN PAIIIES ... 14
Standard AceGen ProCedure ... 16
Mathematica syntax - AceGen syntax ... 24

* Mathematica input ®* AceGen input ®* AceGen code profile * Mathematica input ® AceGen input ®* AceGen
code profile Mathematica input ®* AceGen input ®* AceGen code profile * Mathematica input * AceGen

input ® AceGen code profile

Auxiliary Variables ... 32
USEIr INTEITACE ... 37
Verification of Automatically Generated Codeccoooeiiiiiiirerienn, 43
Program FIOW CONtrol ... 46
Symbolic-Numeric Interface ... 51
Automatic Differentiation ... 53

Theory of Automatic Differentiation ..53

SMSD function 55

Differentiation: Mathematica syntax versus AceGen syntax ...56

Examples 58

Limitations: Incorrect structure of the program 64
Exceptions in Differentiation ... 65
Characteristic FOrmulae ..o 69
Non-local OPerations ... 73
ATTQYS ..ottt s s 75
Run Time Debugging ..o 79
User Defined FUNCLIONS ... 83
Symbolic Evaluation ... 94
Expression Optimization ... 97
Signatures of the EXPresSSions ... 100
Linear AIgEDIrac.ooooiiieee e 101
TeNSOr AIGEDra ... 103
Mechanics Of SOLIASc.cooooiiii e 106

Bibliographly ..o 106

AceGen code generator

Numerical Environments Tutorials ... 108
Finite Element Environments Introductionccoooviiiiiinnin, 108
Standard FE Procedure ... 110
Template CONSANTSccccoooiiiii s 115
Element TOPOIOQY ...t 120
Node Identification ... 126
Numerical Integration ... 128

* Implementation of Numerical Integration
Elimination of local UNKNOWNScooooiiiiee e 135
Standard user SUbroutings ..o, 137

* Initialization ¢ Task type 1 ® Task type 2 » Task type 3 * Task type 4 ¢ Task type 5 * Task type 6
Data STFUCTUIESo.oooe e 145
Integer Type Environment Data ... 145
Real Type Environment Data ..o 152
Node Specification Data ..o 153
NOAE DAL ... 154
Domain Specification Datacccoooiiiiiiiiec 155
Element Data ..o 161
Interactions Templates-AceGen-AceFEM ..., 162
User defined environment interface ... 166
ACEFEM ...ttt 167

¢ About AceFEM
FEAP ..ottt 168
ELFEN ..ottt s s 172
ABAQUS ...ttt 177
MathLink, Matlab Environments ... 179

ACEGEN EXAMPIESo.ooiii e 180
Summary of AceGen EXamples ... 180

* Basic AceGen Examples * Advanced AceGen Examples ® Implementation of Finite Elements in AceFEM
* Implementation of Finite Elements in Alternative Numerical Environments

Solution to the System of Nonlinear Equations ..o, 182
Minimization of Free ENErgy ... 183
Troubleshooting and New in Version ..., 195
AceGen TroublesShooting ..., 195
NEW IN VEISIONoooviiiie et 198
Reference GUIE ..o 199
ACEGEN SESSION ... 199

SMSlInitialize . 199
SMSModule ...201

SMSWrite 202

SMSVerbatim 204

SMSPrint 206

SMSPrintMessage 211

BasiC ASSIGNMENTS ... 211

SMSR 211

SMSV 212

SMSM 213

SMSS .213

AceGen code generator

SMSSimplify . 215
SMSVariables 215

Symbolic-numeric Interface

SMSReal 215
SMSInteger216
SMSLogical ...217
SMSRealList ..217
SMSExport219
SMSCall 221

* Example

SmMart ASSIGNMENTS ..o

SMSFreeze223
SMSFictive230

SMSReplaceAll
SMSSmartReduce ...
SMSSmartRestore ...

SMSRestore ...233

SMSArray 233
SMSPart 234

SMSSum 236

DiIffErENTIATION ettt ettt eeene

SMSD 236

SMSDefineDerivative 237

Program Flow Control

SMSIf 238

SMSEilse 244
SMSEndIf 245
SMSSwitch245
SMSWhich245
SMSDo 246

SMSEndDo253
SMSReturn253
SMSBreak 253
SMSContinue .254

Manipulating notebooks
SMSEvaluateCellsWithTag254

SMSRecreateNotebook
SMSTaglf 255
SMSTagSwitch 255

SMSTagReplace
DEeBUGGING ..ottt

SMSSetBreak .256

SMSLoadSession
SMSClearBreak

SMSActivateBreak

AceGen code generator

Random Signature FUNCLIONSc.cocooiiiiiic 256
SMSADs 256

SMSKroneckerDelta ..257
SMSSaqrt 257
SMSMin 257
SMSMax 257
SMSRandom ..257
General FUNCLIONS ..o 258
SMSNumberQ 258
SMSPower258

SMSUnFreeze 258
Linear AIgEDIa ... 258
SMSLinearSolve 258
SMSLUFactor 258
SMSLUSolve .258
SMSFactorSim 259
SMSInverse259
SMSDet 259
SMSKrammer 259
TeNSOr AIGEDra ... 259
SMSCovariantBase259
SMSCovariantMetric . 259

SMSContravariantMetric 259
SMSChristoffelll 259
SMSChristoffell2 259
SMSTensorTransformation259
SMSDCovariant 260
Mechanics of SOlIAS ... 260

SMSLameToHooke260
SMSHookeToLame260
SMSHookeToBulk260
SMSBulkToHooke261
SMSPIlaneStressMatrix 261
SMSPlaneStrainMatrix 261
SMSEigenvalues 262
SMSMatrixExp 262
SMSInvariantsI 262
SMSInvariants]J 263
MathLink ENVIrONMENTt ... 263
SMSInstallMathLink ..263
SMSLinkNoEvaluations 263
SMSSetLinkOptions . .263
Finite Element ENVironments ... 263
SMSTemplate 263
SMSStandardModule .264
SMSFEAPMake 267
SMSFEAPRun 267

AceGen code generator

SMSELFENMake 268
SMSELFENRun 268
SMSABAQUSMake ..269
SMSABAQUSRun269
Additional definitioNs ... 269

idata$$ 269
rdata$$ 269

ns$$...269

nd$$...269

es$$...270

ed$$...270

SMSTopology 270
SMSNoDimensions270
SMSNoNodes 270
SMSDOFGlobal 270
SMSNoDOFGIobal270

SMSNoAIIDOF 270
SMSSymmetricTangent 270
SMSGroupDataNames 271

SMSDefaultData 271
SMSGPostNames 271
SMSNPostNames 271
SMSNoDOFCondense 271
SMSNoTimeStorage ..271
SMSNoElementData ..271
SMSResidualSign 271
SMSSegments 271
SMSSegmentsTriangulation ...272
SMSNodeOrder 272
ELFEN$NoStress 272
ELFEN$NoStrain 272
ELFENS$NoState 272
ELFENS$ElementModel 272
FEAPS$ElementNumber 272
SMSReferenceNodes . 272
SMSNoNodeStorage ..272
SMSNoNodeData 273
SMSDefaultIntegrationCode . .273
SMSAdditionalNodes .273
SMSNodelD ...273
SMSAdditionalGraphics 273
SMSSensitivityNames 273
SMSShapeSensitivity .273
SMSMainTitle 273
SMSSubTitle ..274
SMSSubSubTitle 274
SMSMM Alnitialisation 274
SMSMMANextStep ...274
SMSMMAStepBack . .274

AceGen code generator

SMSMMAPrelteration 274
SMSIDataNames 274
SMSRDataNames 274
SMSBibliography 274
SMSNoAdditionalData 275
SMSUserDataRules275
SMSCharSwitch 275
SMSIntSwitch 275
SMSDoubleSwitch275
SMSCreateDummyNodes 275
SMSPostlterationCall .275
SMSPostNodeWeights 275
SMSCondensationData 275
SMSDataCheck 276

8 AceGen code generator

AceGen Tutorials

AceGen Preface

AceGen

© Prof. Dr.Joze Korelc, 2006, 2007, 2008, 2009, 2010
Ravnikova 4, SI - 1000, Ljubljana, Slovenia
E-mail : AceProducts@fgg.uni - 1j.si
www .fgg.uni - 1j.si/Symech/

The Mathematica package AceGen is used for the automatic derivation of formulae
needed in numerical procedures. Symbolic derivation of the characteristic quantities
(e.g. gradients, tangent operators, sensitivity vectors, ...) leads to exponential behav-
ior of derived expressions, both in time and space. A new approach, implemented in
AceGen, avoids this problem by combining several techniques: symbolic and alge-
braic capabilities of Mathematica, automatic differentiation technique, automatic
code generation, simultaneous optimization of expressions and theorem proving by a
stochastic evaluation of the expressions. The multi-language capabilities of AceGen
can be used for a rapid prototyping of numerical procedures in script languages of

general problem solving environments like Mathematica or Matlab © as well as to
generate highly optimized and efficient compiled language codes in FORTRAN or C.
Through a unique user interface the derived formulae can be explored and analyzed.

The AceGen package also provides a collection of prearranged modules for the auto-
matic creation of the interface between the automatically generated code and the
numerical environment where the code would be executed. The AceGen package
directly supports several numerical environments such as: MathLink connection to
Mathematica, AceFEM is a research finite element environment based on Mathemat-
ica, FEAP © is a research finite element environment written in FORTRAN,
ELFEN © and ABAQUS © are the commercial finite element environments written
in FORTRAN etc.. The multi-language and multi-environment capabilities of Ace-
Gen package enable generation of numerical codes for various numerical environ-
ments from the same symbolic description. In combination with the finite element

AceGen code generator 9

environment AceFEM the AceGen package represents ideal tool for a rapid develop-
ment of new numerical models.

AceGen Overview

General AceGen Session

SMSInitialize — start AceGen session
SMSModule — start new user subroutine

SMSWrite — end AceGen session and create source file

Assignments and expression manipulations

F .+ .3 .4 — assignment operators
SMSInt . SMSFreeze .SMSFictive — special assignments

SMSSimplify . SMSReplaceAll . SMSSmartReduce . SMSSmartRestore . SMSRestore
SMSVariables — auxiliary variables manipulations

SMSArray . SMSPart . SMSReplacePart . SMSDot . SMSSum — aperations with arrays

SMSD . SMSDefineDerivative — automatic differentiation

Symbolic-numeric interface

SMSReal . SMSInteger .SMSLogical .SMSRealList . — import from input parameters
SMSExport — export to output parameters

SMSCall — call external subroutines

Program Flow Control

SMSIf .SMSElse .SMSEndIf . SMSSwitch . SMSWhich — conditionals
SMSDo . SMSEndDo — loop construct

SMSReturn . SMSBreak . SMSContinue .

Special functions

SMSVerbatim — include part of the code verbatim
SMSPrint . SMSPrintMessage — print to output devices from the generated code

SMSAbs . SMSSign . SMSKroneckerDelta . SMSSqrt . SMSMin . SMSMax . SMSRandom . SMSNumberQ .
SMSPower . SMSTime . SMSUnFreeze — functions with random signature

SMSLinearSolve . SMSLUFactor . SMSLUSolve . SMSFactorSim . SMSInverse . SMSDet
SMSKrammer — linear algebra functions

10 AceGen code generator

SMSCovariantBase . SMSCovariantMetric . SMSContravariantMetric . SMSChristoffelll
SMSChristoffell2 . SMSTensorTransformation . SMSDCovariant — tensor algebra functions

SMSLameToHooke . SMSHookeToLame . SMSHookeToBulk . SMSBulkToHooke
SMSPlaneStressMatrix . SMSPlaneStrainMatrix . SMSEigenvalues . SMSMatrixExp
SMSInvariantsI .SMSInvariantsJ . — mechanics of solids functions

Manipulating notebooks

SMSEvaluateCellsWithTag — evaluate all notebook cells
SMSRecreateNotebook — creates new notebook that includes only evaluated cells

SMSTagIf .SMSTagSwitch . SMSTagReplace . — manipulate break points

Debugging
SMSSetBreak — insert break point

SMSLoadSession — reload the data and definitions for debugging session

SMSClearBreak . SMSActivateBreak — creates new notebook that includes only evaluated parts

MathLink environment

SMSInstallMathLink . SMSLinkNoEvaluations . SMSSetLinkOptions . Solution to the System of
Nonlinear Equations — create installable MathLink Program from generated C code

AceGen Examples

Standard AceGen Procedure . Solution to the System of Nonlinear Equations . Minimization of Free Energy

Finite element environments
SMSInitialize . SMSTemplate . SMSStandardModule . SMSWrite — start AceGen session, et finite

element attributes, create element user subroutines and create element source file

SMSFEAPMake . SMSFEAPRun . SMSELFENMake . SMSELFENRun . SMSABAQUSMake . SMSABAQUSRun . —
link and run generated element with choosen environment

Integer Type Environment Data (idata$$), Real Type Environment Data (rdata$$), Domain Specification Data (es$$),
Element Data (ed$$), Node Specification Data (ns$$), Node Data (nd$$) — FEM data structures

Standard FE Procedure . Summary of Examples . ABAQUS . FEAP . ELFEN . User defined environment interface —
FEM examples

Introduction

m General

Symbolic and algebraic computer systems such as Mathematica are general and very powerful tools for the manipula-
tion of formulae and for performing various mathematical operations by computer. However, in the case of complex
numerical models, direct use of these systems is not possible. Two reasons are responsible for this fact: a) during the
development stage the symbolic derivation of formulae leads to uncontrollable growth of expressions and consequently

AceGen code generator 1

redundant operafions and inefficient programs, b) for numerical implementatioﬁ SAC systerﬁs can not keep up with the
run-time efficiency of programming languages like FORTRAN and C and by no means with highly problem oriented
and efficient numerical environments used for finite element analysis.

The following techniques which are results of rapid development in computer science in the last decades are particu-
larly relevant when we want to describe a numerical method on a high abstract level, while preserving the numerical
efficiency:

> symbolic and algebraic computations (SAC) systems,
> automatic differentiation (AD) tools,

= problem Solving Environments (PSE),

> theorem proving systems (TP),

> numerical libraries,

> specialized systems for FEM.

m AceGen

The idea implemented in AceGen is not to try to combine different systems, but to combine different techniques inside
one system in order to avoid the above mentioned problems. Thus, the main objective is to combine techniques in such
a way that will lead to an optimal environment for the design and coding of numerical subroutines. Among the pre-
sented systems the most versatile are indeed the SAC systems. They normally contain, beside the algebraic manipula-
tion, graphics and numeric capabilities, also powerful programming languages. It is therefore quite easy to simulate
other techniques inside the SAC system. An approach to automatic code generation used in AceGen is called Simultane-
ous Stochastic Simplification of numerical code (Korelc 1997a). This approach combines the general computer algebra
system Mathematica with an automatic differentiation technique and an automatic theorem proving by examples. To
alleviate the problem of the growth of expressions and redundant calculations, simultaneous simplification of symbolic
expressions is used. Stochastic evaluation of the formulae is used for determining the equivalence of algebraic expres-
sions, instead of the conventional pattern matching technique. AceGen was designed to approach especially hard
problems, where the general strategy to efficient formulation of numerical procedures, such as analytical sensitivity
analysis of complex multi-field problems, has not yet been established.

General characteristics of AceGen code generator:

> simultaneous optimization of expressions immediately after they have been derived (Expression Optimization
),

> automatic differentiation technique (Automatic Differentiation , Exceptions in Differentiation),

= automatic selection of the appropriate intermediate variables,

= the whole program structure can be generated (Mathematica syntax - AceGen syntax),

= appropriate for large problems where also intermediate expressions can be subjected to the uncontrolled swell,
= improved optimization procedures with stochastic evaluation of expressions,

= differentiation with respect to indexed variables,

= automatic interface to other numerical environments (by using Splice command of Mathematica),

> multi-language code generation (Fortran/Fortran90, C/C++, Mathematica language, Matlab language),

= advanced user interface,

= advanced methods for exploring and debugging of generated formulae,

= special procedures are needed for non-local operations.

The AceGen system is written in the symbolic language of Mathematica. It consists of about 300 functions and 20000
lines of Mathematica's source code. Typical AceGen function takes the expression provided by the user, either interac-

12 AceGen code generator

tively or in file, and returns an optimized version of the expression. Optimized version of the expression can result in a
newly created auxiliary symbol (v;), or in an original expression in parts replaced by previously created auxiliary
symbols. In the first case AceGen stores the new expression in an internal data base. The data base contains a global
vector of all expressions, information about dependencies of the symbols, labels and names of the symbols, partial
derivatives, etc. The data base is a global object which maintains information during the Mathematica session.

The classical way of optimizing expressions in computer algebra systems is searching for common sub-expressions at
the end of the derivation, before the generation of the numerical code. In the numerical code common sub-expressions
appear as auxiliary variables. An alternative approach is implemented in AceGen where formulae are optimized,
simplified and replaced by the auxiliary variables simultaneously with the derivation of the problem. The optimized
version is then used in further operations. If the optimization is performed simultaneously, the explicit form of the
expression is obviously lost, since some parts are replaced by intermediate variables.

Origiral ratrix
(gt for LeeCen)
Vector of 3 new amxiliaryvariables
(}_[IEEI _vlL _EVIL]
[12ET 6Er 12ET 6ET] Y r 2 3
r I ©
B a8l 4ET 6Er 2ET
[K']= It L Il L
"" | 12Er GEI 12EI GEI s AceGen
r I r I
B apiny 2ET 6ES 4 ET l
| I L I L ER
¥y
Yy Yy -V E
[Kn]=
s W L6} —V;
Vs
Yy - ThW
Result is simplified matrix, i 2 i
expressed with the new awxilary
variahles

Simultaneous simplification procedure.

In real problems it is almost impossible to recognize the identity of two expressions (for example the symmetry of the
tangent stiffness matrix in nonlinear mechanical problems) automatically only by the pattern matching mechanisms.
Normally our goal is to recognize the identity automatically without introducing additional knowledge into the deriva-
tion such as tensor algebra, matrix transformations, etc. Commands in Mathematica such as Simplify, Together, and
Expand, are useless in the case of large expressions. Additionally, these commands are efficient only when the whole
expression is considered. When optimization is performed simultaneously, the explicit form of the expression is lost.
The only possible way at this stage of computer technology seems to be an algorithm which finds equivalence of
expressions numerically. This relatively old idea (see for example Martin 1971 or Gonnet 1986) is rarely used, although
it is essential for dealing with especially hard problems. However, numerical identity is not a mathematically rigorous
proof for the identity of two expressions. Thus the correctness of the simplification can be determined only with a

AceGen code generator 13

certain degree of probability. With regard to our experience this can be neglécted in mechanical analysis when dealing
with more or less 'smooth' functions.

Practice shows that at the research stage of the derivation of a new numerical software, different languages and differ-
ent platforms are the best means for assessment of the specific performances and, of course, failures of the numerical
model. Using the classical approach, re-coding of the source code in different languages would be extremely time
consuming and is never done. With the symbolic concepts re-coding comes practically for free, since the code is
automatically generated for several languages and for several platforms from the same basic symbolic description. The
basic tests which are performed on a small numerical examples can be done most efficiently by using the general
symbolic-numeric environments such as Mathematica, Maple, etc. It is well known that many design flaws such as
instabilities or poor convergence characteristics of the numerical procedures can be easily identified if we are able to
investigate the characteristic quantities (residual, tangent matrix, ...) on a symbolic level. Unfortunately, symbolic-
numeric environments become very inefficient if we have a larger examples or if we have to perform iterative numeri-
cal procedures. In order to assess performances of the numerical procedure under real conditions the easiest way is to
perform tests on sequential machines with good debugging capabilities (typically personal computers and programs
written in Fortran or C language). At the end, for real industrial simulations, large parallel machines have to be used.
With the symbolic concepts implemented in AceGen, the code is automatically generated for several languages and for
several platforms from the same basic symbolic description.

m Mathematica and AceGen

Since AceGen runs in parallel with Mathematica we can use all the capabilities of Mathematica. The major algebraic
computations which play crucial role in the development of any numerical code are:

> analytical differentiation,

> symbolic evaluation,

> symbolic solution to the system of linear equations,

= symbolic integration,

= symbolic solution to the system of algebraic equations.

Each of these operations can be directly implemented also with the built-in Mathematica functions and the result
optimized by AceGen. However, by using equivalent functions in AceGen with simultaneous optimization of expres-
sions, much larger problems can be efficiently treated. Unfortunately, the equivalent AceGen functions exist only for
the 'local' operations (see Non-local Operations).

14 AceGen code generator

AceGen Palettes

Main AceGen palette.

Home AceGen | AceFEM —)l help buttons

uit sbort | Continue | se—ge E7 aluaton control
buttons

AceGen operakors

E | [| = | 4 q’ paﬁtﬁ' ArceGen

operators
Wiew
'h.,'
* gy €314
C Rl 2%

>-' view controls

Expand selected variable |v|

Show shortest tag | |

Print precision IB ha -

Open code profile | — display generated
progratmn

Skakbus

AceGen code generator

Display generated program.

| code profile palette |

Close | Update |
Wiew |v|
Cutlining |v|
Include |?|

gt |
browse formulae

Variable 18
Instance 1
ﬁ‘fl 9, C Sz 19

B

Position 20
R E
KEiq
_ —kk=q &
T |

FE11

—kEzq :
=— Fhzz -kbiz ¥
Kty 22 12 %1k
33{=+aﬁ

| code profile display |

test |

O x0v0ae =y O

]:":' | = l,n$$,l

L o
iy o2 KEpg Kbpp Ktzp Ay Ox 3
[f SMSSqrt *+ﬁy*] .

variable

If i==n%%

Print['no c:nnveri;inn']
Feturn[Mull Module] ;

L

EndIf

16 AceGen code generator

Debugger palette and display.

| debugger palette | | debugger display |
Profile controls E| - =]
Close | Update | test | |
Wig Lrl 2 x0=1.9v0=-1.2a=3. =0.0001
Outlining |*I 10 =1.93444058 . =-1.2470187 ©
Do [igl] = 1,[ng%=2],1
Include |-| f
Run time izl &) =0.019 & =0. 264Kty =7, 23Kty> =
Refresh Ktz2 4. 56 Ay =-0.04701871 Ax=0.03444
o — . 21.9344408 -y =-1.2470187 0 A O

| [—
it 4 ax' e ay® wy/ (-0.04701871) ¢ + (
X§§= [0 ml.9344408] y§§=[3y =-1.247C
W Conkinue Break|]:

o
Enali

o

Activate Firsk

If i=sl

Print| 'no convergion']
Return[Hull,Huduf; =

)

EndIf

®xio
EndDo

s

Standard AceGen Procedure

m Description of Introductory Example

Let us consider a simple example to illustrate the standard AceGen procedure for the generation of a typical numerical
sub-program that returns gradient of a given function f with respect to the set of parameters. Let unknown function u be
approximated by a linear combination of unknown parameters u;, u,, u3 and shape functions Ny, N;, N3.

=35 Nuj
Ni=7
szl—{

X X
Ny=7(1-7)

Let us suppose that our solution procedure needs gradient of function f = u> with respect to the unknown parameters.
AceGen can generate complete subprogram that returns the required quantity.

AceGen code generator 17

m Description of AceGen Characteristic Steps

The syntax of the AceGen script language is the same as the syntax of the Mathematica script language with some
additional functions. The input for AceGen can be divided into six characteristic steps.

step example
1 Initialization — SMSInitialize["test","Language"—>"C"]
2 Definition of input and output parameters — SMSModule["Test" Real[u$$[3],x$$.L$$.¢$$(3111;
3 Definition of numeric— R {x,L}-{SMSReal[x$$],SMSReal[L$$]};
symbolic interface variables uitSMSReal[Table[u$$[i],{i,3}]];
. X X X X
Nllz{i ,l—z >y (1—1)},
4 Derivation of the problem — ueNi.ui;
feu?;
geSMSDIf ,ui];

5 Deflnlt.lo'n of symboh.c— — SMSExport[g,g$$];
numeric interface variables

6 Code generation — SMSWrite[];

Characteristic steps of the AceGen session

Due to the advantage of simultaneous optimization procedure we can execute each step separately and examine interme-
diate results. This is also the basic way how to trace the errors that might occur during the AceGen session.

Step 1: Initialization

This loads the AceGen package.

<<AceGen"~

This initializes the AceGen session. FORTRAN is chosen as the final code language. See also SMSInitialize.

SMSInitialize["test", "Language" -> "Fortran"];

Step 2: Definition of Input and Output Parameters

This starts a new subroutine with the name "Test" and four real type parameters. The input parameters of the subroutine are u, x,
and L, and parameter g is an output parameter of the subroutine. The input and output parameters of the subroutine are character-
ized by the double $ sign at the end of the name. See also Symbolic-Numeric Interface.

SMSModule["Test", Real [u$$[3], x$$, LSS, gS[3111;

Step 3: Definition of Numeric-Symbolic Interface Variables

Here the input parameters of the subroutine are assigned to the usual Mathematica variables. The standard Mathematica assignment
operator = has been replaced by the special AceGen operator k. Operator k performs stochastic simultaneous optimization of
expressions. See also Auxiliary Variables, SMSReal.

X + SMSReal [x$$]

X

18 AceGen code generator

L + SMSReal [LS]

u

Here the variables u[1], u[2], u[3] are introduced.

ui r SMSReal [Table[u$$[i] , {i, 3}1]

(uis], uis|, uial)

Step 4: Description of the Problem

Here is the body of the subroutine.

Nie{x/L, 1 -x/L, x/L*x(1-x/L)}

(Nia], Nis|, Nial)

ukeNi.ui

ul

fru~t2

fl

gESMSD[f, ui]

{CI1|, Chl, Chl}

Step 5: Definition of Symbolic - Numeric Interface Variables

This assigns the results to the output parameters of the subroutine. See also SMSExport.

SMSExport[g, g$$];

Step 6: Code Generation

During the session AceGen generates pseudo-code which is stored into the AceGen database. At the end of the session AceGen
translates the code from pseudo-code to the required script or compiled program language and prints out the code to the output
file.See also SMSWrite.

SMSWrite[];

File: test.f Size: 946

Methods No.Formulae No.Leafs
Test 6 81

AceGen code generator

This displays the contents of the generated file.
FilePrint["test.f"]

IEEEE R R EEEEEEREREEEEREREREEREREREREEEEREEEREEREREREEEEEERER RS

!* AceGen 2.502 Windows (18 Nov 10) *
1% Co. J. Korelc 2007 24 Nov 10 13:30:52+*
!**
! User : USER
Evaluation time
Number of formulae

! 0 s Mode : Optimal
|

! Subroutine

!

]

6 Method: Automatic
Test size :81

81 subexpressions

379 bytes

Total size of Mathematica code
Total size of Fortran code

!******************* S UBROUTTINE **%%xkdkkkkhdhhhhhrhhrhdhikx
SUBROUTINE Test(v,u,Xx,L,q)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(5001),u(3),x,L,g(3)
v(6)=x/L
v(7)=1d0-v(6)
v(8)=v(6)*v(7)
v(9)=u(l)*v(6)+u(2)*v(7)+u(3)*v(8)
v(15)=2d0*v(9)
g(1l)=v(15)*v(6)
g(2)=v(15)*v(7)
g(3)=v(1l5)*v(8)
END

m Generation of C code

Instead of the step by step evaluation, we can run all the session at once. This time the C version of the code is generated.

<< AceGen";
SMSInitialize["test", "Language" -> "C"];
SMSModule["Test", Real [u$$[3], x$$, LSS, g$$[3]111];
{x, L} + {SMSReal[x$$], SMSReal[L$$]};
ui r SMSReal [Table[u$$[i], {i, 3}1]
x X X x
Nil:{—, 1-—, — (1——)};
L L L L
ukeNi.ui;
fE uz;
gESMSD[f, ui];
SMSExport[g, g$$];
SMSWrite[];

Method : TeSt 6 formulae, 81 sub-expressions

[0] File created : teSt e C size : 863

20

AceGen code generator

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (17 Jul 08) *
* Co. J. Korelc 2007 17 Jul 08 13:04:01*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of C code

#include "sms.h"

0 s Mode : Optimal
6 Method: Automatic
Test size :81

81 subexpressions

294 bytes*/

s ee e es e

[rrkkkkkkkkkkkkkkkk*k*k § U B R O UT I N E **kkkkkdhhhhhhhkhhhkhkhk/

void Test(double v[5001],double u[3],double (*x),double (*L),double g[3])

{

v[6]1=(*x)/(*L);

v[7]1=1e0-v[6];

v[8]=v[6]*V[7];
v[9]1=u[0]*v[6]+u[l]*v[7]+u[2]*v[8];
v[15]=2e0*v[9];

gl0]=v[15]*v[6];

gll]=v[15]*v[7];

gl21=v[15]*v[8];

}i

m Generation of MathLink code

<< AceGen" ;

SMSInitialize["test", "Environment" -> "MathLink"];

SMSModule["Test", Real[u$$[3], x$$, LSS, gS[311],
"Input" -» {u$$, x$$, LSS}, "Output” - g$$];

{x, L} + {SMSReal[x$$], SMSReal [L$$]};

ui r SMSReal [Table[u$$[i], {i, 3}]]

b X X X
Nil:{—, 1-—, - (1——)};

L L L L

ueNi.uij;

2

feEu®;

gESMSD[f, ui];
SMSExport[g, g$$];
SMSWrite[];

Method : TeSt 6 formulae, 81 sub-expressions

[0] File created : teSt e C size : 1787

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (17 Jul 08) *
* Co. J. Korelc 2007 17 Jul 08 13:04:03*
EE R R SR EE RS E LRSS SR EEEEEEE S EEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
User : USER
Evaluation time
Number of formulae
Subroutine

0 s Mode : Optimal
6 Method: Automatic
Test size :81

e e e

Here the MathLink (MathLink and External Program Communication) version of the source code is generated. The generated code
is automatically enhanced by an additional modules necessary for the proper MathLink connection.

AceGen code generator

Total size of Mathematica code : 81 subexpressions

Total size of C code : 294 bytes*/

#include "sms.h"

#include "stdlib.h"

#include "stdio.h"

#include "mathlink.h"

double workingvector[51017];

void Test(double v[5001],double u[3],double (*x),double (*L),double g[3]);

void TestMathLink(){

int i1000,i1001,i1002,i11003,i1004,i1j1,i4j1,ilsl,i4dsl;
char *bl; double *b2;int *b3;

double u[3];

double *x;

double *L;

double g[3];

++MathLinkCallCount[0];

/* read from link */

MLGetRealList(stdlink,&b2,&iljl);

for(iljl=0;i1j1<3;il1jl++){
uf[iljl]=b2[iljl];

}

MLDisownRealList(stdlink,b2,3);

x=(double*) calloc(l,sizeof(double));

MLGetReal(stdlink,x);

L=(double*) calloc(l,sizeof(double));

MLGetReal (stdlink,L);

/* allocate output parameters */
ilsl=3;
i4s1=3;

/* call module */
Test (workingvector,u,x,L,qg);

/* write to link */
free(x);

free(L);
PutRealList(g,i4sl);
}i

void MathLinkInitialize()
{
MathLinkOptions[CO_NoSubroutines]=1;
printf("MathLink module: %s\n","test");
}i

[Hhxkkkkkkkkkxkkkxkkkx*x S U B R O UT I NE **xkkkkkkkkhkhkhkkkkkkk/
void Test(double v[5001],double u[3],double (*x),double (*L),double g[3])
{

v[6]=(*x)/(*L);

v[7]=1e0-v[6];

v[8]=v[6]*V[7];

v[9]1=u[0]*V[6]+u[l]*v[7]+u[2]*v[8];

v[15]1=2e0*v[9];

g[0]=v[15]*v[6];

gll]=v[15]*v[7];

gl2]=v[15]*v[8];

}i

22 AceGen code generator

Here the MathLink program Test.exe is build from the generated source code and installed so that functions defined in the source
code can be called directly from Mathematica. (see also SMSInstallMathLink)

SMSInstallMathLink[]

{SMSSetLinkOption[test, {i_Integer, j Integer}], SMSLinkNoEvaluations[test], Test]|
u_? (ArrayQ[#l, 1, NumberQ] && Dimensions[#1] === {3} &), x_?NumberQ, L ?NumberQ]}

Here the generated executable is used to calculate gradient for the numerical test example. (see also Verification of Automatically
Generated Code).

Test[{0., 1., 7.}, n // N, 10.]

{1.37858, 3.00958, 0.945489}

m Generation of Matlab code

The AceGen generated M-file functions can be directly imported into Matlab. Here the Matlab version of the source code is
generated.

<< AceGen";
SMSInitialize["test", "Language" -> "Matlab"];
SMSModule["Test", Real[u$$[3], x$$, LSS, g$$[31],
"Input" - {u$$, x$$, L$$}, "Output” - g$$];
{x, L} r {SMSReal [x$$], SMSReal[L$$]};
ui + SMSReal [Table[u$$[i], {i, 3}]]
X X X X
Nil:{—, 1-—, - (1——)};
L L L L
ueNi.uij;
fE uz;
gESMSD[f, ui];
SMSExport[g, g$$];
SMSWrite[];

Method : TeSt 6 formulae, 81 sub-expressions

(0] File created : LSt « M size : 1084

AceGen code generator 23

FilePrint["test.m"]

Yhhkhkhkhkhhkhkhkhhkhkhkhhhhkdkdhhhhkhkdkhhhhkdkdhhhkhkdrkdrkrkdxk

$* AceGen 2.103 Windows (17 Jul 08) *
g* Co. J. Korelc 2007 17 Jul 08 13:04:06%*
Yrhrkhhkhhhkkkhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhdhhddhrhhhrdhrkrdrrdhxd

% User : USER

% Evaluation time : 0s Mode : Optimal
% Number of formulae : 6 Method: Automatic
% Subroutine : Test size :81

% Total size of Mathematica code : 81 subexpressions

% Total size of Matlab code : 299 bytes

%*********************** F U N c T I O N EE RS SR LR SRS EEEEEEEEEEEEEES

function[g]=Test(u,x,L);

persistent v;

if size(v)<5001
v=zeros (5001, 'double');

end;

v(6)=x/L;

v(7)=1le0-v(6);

v(8)=v(6)*v(7);

v(9)=u(l)*v(6)+tu(2)*v(7)+u(3)*v(8);

v(15)=2e0*v(9);

g(l)=v(15)*v(6);

g(2)=v(15)*v(7);

g(3)=v(1l5)*v(8);

function [x]=SMSKDelta(i,j)

if (i==j) , x=1; else x=0; end;

end

function [x]=SMSDeltaPart(a,i,j, k)

l=round(i/j);

if (mod(i,j) ~= 0 | 1>k) , x=0; else x=a(l); end;
end

function [x]=Power(a,b)

x=a’b;

end

end

Mathematica syntax - AceGen syntax

In principle we can get AceGen input simply by replacing the = operators in standard Mathematica input by an appropri-
ate AceGen assignment operator (£ , 3 , 4), the standard Mathematica conditional statements If, Which and Switch
by the AceGen SMSIf, SMSWhich and SMSSwitch statements and the standard Mathematica loop statement Do by the
AceGen SMSDo statement. All other conditional and loop structures have to be manually replaced by the equivalent
forms consisting only of SMSIf and SMSDo statements. It is important to notice that only the replaced conditionals and
loops produce corresponding conditionals and loops in the generated code and are evaluated when the generated
program is executed. The conditional and loops that are left unchanged are evaluated directly in Mathematica during
the AceGen session.

24 AceGen code generator

Ihserhs Evaluates and optimizes rhs and assigns the result to be the value
of lhs (see also: Auxiliary Variables, Expression Optimization).

lhs 4 rhsl Evaluates and optimizes rhs] and assigns
the result to be the value of /hs. The [hs variable can
appear after the initialization more than once on a left—
hand side of equation (see also: Auxiliary Va.riables).

lhs 4 rhs2 A new value rhs2 is assigned to the previously
created variable lhs (see also: Auxiliary Variables).

lhseSMSIf[condition, t, f] Creates code that evaluates ¢ if condition evaluates to True,
and f if it evaluates to False. The value assigned
to [hs during the AceGen session represents both
options (see also: Program Flow Control, SMSIf)

lhseSMSWhich([test| ,value, test, value,,...] Creates code that evaluates each of the fest; in turn,
returning the value of the value; corresponding
to the first one that yields True. The value assigned
to lhs during the AceGen session represents all
options (see also: Program Flow Control, SMSSWitCh).

lhse SMSSwitch[expr, Creates code that evaluates expr,

Sform| value,,form, value,,...] then compares it with each of the form; in turn,
evaluating and returning the value; corresponding
to the first match found. The value assigned to lhs
during the AceGen session represents all options
(see also: Program Flow Control, SMSWhich).

SMSDolexpr i, imin, imax, Ai}] Creates code that evaluates expr with the variable i
successively taking on the values i,,;, through i,,,, in
steps of di (see also: Program Flow Control, SMSDO).

lhs3lhsg An initial value lhs is first assigned to the variable /hs. lhs is in
SMSDo[a loop continuously changed. After the loop the variable lhs
lhsH funcllhs] (during the AceGen session) represents all possible values.

,{i» imin, imax’ Ai,lhs}]

yntax of the basic AceGen commands.

The control structures in Mathematica have to be completely located inside one notebook cell (e.g. loop cannot start in
once cell and end in another cell). AceGen extends the functionality of Mathematica with the cross-cell form of If and
Do control structures as presented in Program Flow Control chapter.

m Example 1: Assignments
Mathematica input

X=.7ND=.3

y = Sin[x]"

Sin[x]"

AceGen code generator

25

AceGen input

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["Test", Real[x$$, y$$], Integer[n$$]];
X + SMSReal [xS];

n+ SMSInteger[n$$];

y ESin[x]";

AceGen code profile

Test |

X=xs$s nlnss Vl=sin [ﬁ] o

SMSExport[y, y$$1;
SMSWrite[];

Method : TeSt 1 formulae, 13 sub-expressions

[0] File created : teSt e C size : 726

FilePrint["test.c"]

/***

* AceGen 2.115 Windows (20 Nov 08) *
* Co. J. Korelc 2007 20 Nov 08 00:18:33*

kkhkhkkhkkkhkhkhkkhkhhkhkhkkhkhhkhkhhkhhkhkhhkhhkhkhhkhkhhkhhkhkhhkhhkhkhkkhkhkhkhhkhkkhkhkkhkhkkhkkkk**x
User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae : 1 Method: Automatic
Subroutine : Test size :13

Total size of Mathematica code : 13 subexpressions

Total size of C code : 164 bytes*/

#include "sms.h"

[xhkkkkkkkkkhkkkxxx*x G U B R O UT I NE ***kkkxkkkkhkhhkkxkhkhdk/
void Test(double v[5001],double (*x),double (*y),int (*n))
{

(*y)=Power (sin((*x)), (int)((*n)));

}i

m Example 2: Conditional statements (If construct)
T x=77
y = x x<7

X2 x<0

x=0

z=Sin(y) +1

26 AceGen code generator

Mathematica input

y:If[xz 0
 If[x 27

s X

z = Sin[y] +1

1+sin[If[$V[1, 1] =0, If[x=>7, 7, x], x*|]

AceGen input

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["Test", Real[x$$, zS]1];

X + SMSReal [xS];

yl:SMSIf[x 20

;, SMSIf[x 27
s 7

r X

1

rxz

]:

z ESin[y] +1;

AceGen code profile

Test |

ﬁEX$$

If 2d230
If 2d;z7

ﬂlz7

Else

2vl= X

EndIf

vl-2v]

Else

vl

EndIf

jzl + Sin[ﬂ”

AceGen code generator

27

SMSExport [z, z$$];
SMSWrite[];
FilePrint["test.c"]

File: test.c Size: 839
Methods No.Formulae No.Leafs
Test 5 22

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:33:36*%
EE R R R R R R RS EE SR SRR RS SR LSRR EEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of C code

#include "sms.h"

0 s Mode : Optimal

5 Method: Automatic
Test size :22

22 subexpressions

266 bytes*/

e e e ee

/******************* S U B R O U T I N E *********************/
void Test(double v[5001],double (*x),double (*z))
{
int b2,b3;
if((*x)>=0e0){
if((*x)>=7e0)({
v[4]=7e0;
} else {
v[4]=(*x);
}i
v[5]1=v[4];
} else {
v[5]=Power((*x),2);
b
(*z)=1leO+sin(v[51]);

}i

m Example 3: Loops (Do construct)

2(i) = Sin(x)
y="3L (<)

i
4—

i
2(0))

Mathematica input

NOTE: Upper limit n in Do can only have specific integer value!

28 AceGen code generator

Clear[x]; n=5;
y=0;
po|

Z = Sin[xi];

i i
y=y+(z+—] ;
z

, {i, 1, n, 1}]

Y

Csc[x] +Sin[x] + (2 Csc[xz] +Sin{x2])2 +

(3csc[%’]| +sin|[%’])3 + (4 csc[x*] +sin[x*])4 + (5Csc[x®] +8in[%°|)5

AceGen input
NOTE: Upper limit n in SMSDo can have arbitrary value!

NOTE: Original list of arguments of Do construct {i, /, n, 1} is in SMSDo extended by an additional argument {i, /, n,
1, y} that provides information about variables that are imported into the loop and have values changed inside the loop
and all variables that are defined inside the loop and used outside the loop.

<< AceGen";

SMSInitialize["test", "Language" -> "C#"];
SMSModule["Test", Real[x$$, y$$], Integer[n$$]];
X + SMSReal [xS];

n+ SMSInteger[n$$];

y40;

smsno[

ZE Sin[xi] ;

i i
vy4y+ [z+—] ;
z
,{i, 1,0, 1, 9}];
AceGen code profile

Test |

ﬁ5x$$ mzn$$ 1VI]=0
ﬂ = 1:[m5n$$]11

1 2

AceGen code generator 29

SMSExport [y, y$$1;
SMSWrite[];
FilePrint["test.cs"]

File: test.cs Size: 883
Methods No.Formulae No.Leafs
Test 5 41

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:33:52*%
PR SR SR SRS SRS S SRS S S EEEEE SR EE S S S E SR SRS EEEEEEEEEEEEEEEEEEEEESEEES
User : USER
Evaluation time
Number of formulae

0 s Mode : Optimal
5 Method: Automatic

Subroutine Test size :41
Total size of Mathematica code 41 subexpressions
Total size of C# code : 265 bytes*/

private double Power (double a, double b){return Math.Pow(a,b);}

/******************* S UBROUTINE *********************/
void Test(ref double[] v,ref double x,ref double y,ref int n)
{
i2=(int) (n);
v[3]=0e0;
for(id=1;i4<=i2;i4++){
v[5]=Math.Sin(Power(x,i4));
v[3]=v[3]+Power(i4/v[5]+v[5],14);
};/* end for */
y=vI[3];
}

m Example 4: Conditional statements (Which construct)

>0 {x27 7
y:{ x<T x
x<0 x2

z=Sin[y]+1

Mathematica input

Clear[x];
y Which[xz 0&& x27,7,x2 0&& x<7,%x,%x<0, xz]
z =Sin[y] +1

Which[sz&&xz7, 7, x>0&&x<7,%x,%x<0, xz}

1+Sin[which[x20&&xz7, 7, x>20&8&x<7,%x,x<0, XZH

AceGen input

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["Test", Real[x$$, zS]1];

X + SMSReal [x$$];

yl:SMSWhich[xZ O& x27,7,x2 0&& x<7,%,%x<0, xz];

z £ Sin[y] +1;

30

AceGen code generator

AceGen code profile

Test |

2dzx$$ 1bSVVzTrue
If zdz O&&)dz:7

7bSVVEFalseJ)dz7
EndIf

If zbSWl&&ﬁz 0&&ﬂ< 7
AbSleFalse ﬂlzﬁ

EndIf

If :bSWl&&ﬁ< 0
ﬁbSVVFFalse;degdz

EndIf

ﬂzl + Sin[ﬂ”

AceGen code generator 31

SMSExport [z, z$$];
SMSWrite[];
FilePrint["test.f"]

File: test.f Size: 1105
Methods No.Formulae No.Leafs
Test 8 35

IEE R R R R EE R R LR EEEEREREREEEEREREEEEEEREEEEEEREREREEEEEEREE RS

!* AceGen 2.502 Windows (18 Nov 10) *
1* Co. J. Korelc 2007 24 Nov 10 13:34:40%*

lhdkkhdhhhdhhhhdhhhdhhhhdhhdhdhhhdhhddhhdhdhhdhhddhrhddhhrddhrhdhrrddrhddrrddr

! User : USER

! Evaluation time : 0 s Mode : Optimal

! Number of formulae : 8 Method: Automatic
! Subroutine : Test size :35

! Total size of Mathematica code : 35 subexpressions

! Total size of Fortran code : 528 bytes

!******************* S UBR O UTINE ***k*k*kkkkkkkkkdkdkrkkkx
SUBROUTINE Test(v,x,2)
IMPLICIT NONE
include 'sms.h'

LOGICAL b2,b3,b5,b6

DOUBLE PRECISION v(5001),x,z
b2=.true.
IF(xX.ge.0d0.and.x.ge.7d0) THEN
b2=.false.

v(4)=7d0

ELSE

ENDIF
IF(b2.and.x.ge.0d0.and.x.1t.7d0) THEN
b2=.false.

v(4)=x

ELSE

ENDIF

IF(b2.and.x.1t.0d0) THEN
b2=.false.

V(4)=x**2

ELSE

ENDIF

z=1d0+dsin(v(4))

END

Auxiliary Variables

AceGen system can generate three types of auxiliary variables: real type, integer type, and logical type auxiliary
variables. The way of how the auxiliary variables are labeled is crucial for the interaction between the AceGen and
Mathematica. New auxiliary variables are labeled consecutively in the same order as they are created, and these labels
remain fixed during the Mathematica session. This enables free manipulation with the expressions returned by the
AceGen system. With Mathematica user can perform various algebraic transformations on the optimized expressions
independently on AceGen. Although auxiliary variables are named consecutively, they are not always stored in the data
base in the same order. Indeed, when two expressions contain a common sub-expression, AceGen immediately replaces
the sub-expression with a new auxiliary variable which is stored in the data base in front of the considered expressions.
The internal representation of the expressions in the data base can be continuously changed and optimized.

Auxiliary variables have standardized form $V[i, j], where i is an index of auxiliary variable and j is an instance of the
i-th auxiliary variable. The new instance of the auxiliary variable is generated whenever specific variable appears on the
left hand side of equation. Variables with more that one instance are "multi-valued variables".

The input for Mathematica that generates new auxiliary variable is as follows:

lhs operator rhs

32 AceGen code generator

The structure 'lhs operator rhs' first evaluates right-hand side expression rks, creates new auxiliary variable, and assigns
the new auxiliary variable to be the value of of the left-hand side symbol /is. From then on, lhs is replaced by a new
auxiliary variable whenever it appears. The rhs expression is then stored into the AceGen database.

In AceGen there are four operators k|-, 4, and 4. Operators k and I are used for variables that will appear only once on
the left-hand side of equation. For variables that will appear more that once on the left-hand side the operators = and A
have to be used. These operators are replacement for the simple assignment command in Mathematica (see Mathemat-
ica syntax - AceGen syntax).

vEexp A new auxiliary variable is created if AceGen finds
out that the introduction of the new variable is necessary,
otherwise v=exp. This is the basic form for defining new
formulae. Ordinary Mathematica input can be converted to the AceGen
input by replacing the Set operator (a=b) with the F operator (akb).

v exp A new auxiliary variable is created,
regardless on the contents of exp. The primal functionality
of this form is to force creation of the new auxiliary variable.

v4exp A new auxiliary variable is created,
regardless on the contents of exp. The primal functionality of this
form is to create variable which will appear more than once on a left—
hand side of equation (multi—valued variables).

v+exp A new value (exp) is assigned to the previously created auxiliary variable
v. At the input v has to be auxiliary variable created as the result of v 4
exp command. At the output there is the same variable v,
but with the new signature (new instance of v).

yntax of AceGen assignment operators.

If x is a symbol with the value $V/i,j], then after the execution of the expression x4 exp, x has a new value $V[i j+1].
The value $V/i,j+1] is a new instance of the i-th auxiliary variable.

Additionally to the basic operators there are functions that perform reduction in a special way. The SMSFreeze function
imposes various restrictions in how expression is evaluated, simplified and differentiated. The SMSSmartReduce
function does the optimization in a 'smart' way. 'Smart' optimization means that only those parts of the expression that
are not important for the implementation of 'non-local' operation are replaced by a new auxiliary variables.

See also: SMSR, SMSS, SMSReal, SMSInteger , Mathematica syntax - AceGen syntax

The "signature" of the expression is a high precision real number assigned to the auxiliary variable that represents the
expression. The signature is obtained by replacing all auxiliary variables in expression by corresponding signatures and
then using the standard N function on the result (N[expr, SMSEvaluatePrecision]). The expression that does not yield a
real number as the result of N[expr, SMSEvaluatePrecision] will abort the execution. Thus, any function that yields a
real number as the result of numerical evaluation can appear as a part of AceGen expression. However, there is no
assurance that the generated code is compiled without errors if there exist no equivalent build in function in compiled
language.

Two instances of the same auxiliary variable can appear in the separate branches of "If" construct. At the code genera-
tion phase the active branch of the "If" construct remains unknown. Consequently, the signature of the variable defined
inside the "If" construct should not be used outside the "If" construct. Similar is valid also for "Do" construct, since we
do not know how many times the "Do" loop will be actually executed. The scope of auxiliary variable is a part of the
code where the signature associated with the particular instance of the auxiliary variable can be uniquely identified. The
problem of how to use variables outside the "If"/"Do" constructs is solved by the introduction of fictive instances.
Fictive instance is an instance of the existing auxiliary variable that has no effect on a generated source code. It has
unique signature so that incorrect simplifications are prevented. Several examples are given in (SMSIf, SMSDo).

AceGen code generator 33

An unique signature is also required for all the basic independent variables for differentiation (see Automatic Differentia-
tion) and is also automatically generated for parts of the expressions that when evaluated yield very high or very low

signatures (e.g 107100, 10A-100, see also Expression Optimization, Signatures of the Expressions). The expression

optimization procedure can recognize various relations between expressions, however that is no assurance that relations

will be always recognized.Thus users input most not rely on expression optimization as such and it must produce the

same result with or without expression optimization (e.g.in "Plain" mode).

Example: real, integer and logical variables

This generates three auxiliary variables: real variable x with value 7, integer variable i with value 1, and logical variable [with
value True.

<< AceGen" ;

SMSInitialize["test", "Language" -> "Fortran", "Mode" -> "Debug"];
SMSModule["Test"];

X + SMSReal [r];

i r SMSInteger[1];

1 + SMSLogical [True];

SMSWrite[];

time=0 variable= 0 = {x}
[0] Consistency check - global
[0] Consistency check - expressions

[0] Generate source code :

Method : TeSt 3 formulae, 13 sub-expressions

Events: 0
[0] Final formating

Export source code.

(0] File created : LSt . f size : s60

Intermediate variables are labeled consecutively regardless of the type of variable. This displays how internal variables really look
like.

{x, i, 1} // ToString

{svi1, 11, sv[2, 1], $V[3, 1]}

34

AceGen code generator

This displays the generated FORTRAN code. AceGen translates internal representation of auxiliary variables accordingly to the
type of variable as follows:

o X

FilePrint["test.f"]

IEE R R R R R EE R EREREEEEREREREEREREREREEEEREREREEREREREEEREEEEE RS

!* AceGen 2.103 Windows (17 Jul 08)
1% Co. J. Korelc 2007

*

17 Jul 08 22:29:46%*

R R R E R R R R R R R R R R R R R R R R

User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode

e se ss es e

295 bytes

: Debug

3 Method: Automatic
Test size :13
13 subexpressions

lhkkkdhkdhkkkkkkdkxk*xk** § U B R O UT I NE **kkkkkdkkhhhkdhkdhkhkkkrx

SUBROUTINE Test (V)
IMPLICIT NONE
include 'sms.h'
INTEGER i2
LOGICAL b3
DOUBLE PRECISION v(5001)
11 =x
v(1)=0.3141592653589793d1
12 =1
i2=int (1)
13 =1
b3=.true.
END

Example: multi-valued variables

This generates two instances of the same variable x. The first instance has value 7 and the second instance has value 7-.

<< AceGen;
SMSInitialize["test", "Language" -> "Fortran", "Mode"
SMSModule["Test"];
x 4 SMSReal [7] ;

x4 7%;

SMSWrite[];

time=0 variable= 0 = {x}
[0] Consistency check - global
[0] Consistency check - expressions

[0] Generate source code :

Method : TeSt 2 formulae, 7 sub-expressions

Events: 0
[0] Final formating

Export source code.

[0] File created : teSt ° f Size : 812

-> "Debug"];

2

AceGen code generator 35

This displays how the second instance of x looks like inside the expressions.

x // ToString

$VI1, 2]

This displays the generated FORTRAN code. AceGen translates two instances of the first auxiliary variable into the same FOR-
TRAN variable.

x = $V[1, 1] => v (1)
x := $V[1, 2] => v (1)

FilePrint["test.f"]

lhdkkhhhhhhhkhdhhhdhhhhhhhdhhhdhhddhhhhhhdhhddhddhrddrrdhrddrrddrrddr

!* AceGen 2.103 Windows (17 Jul 08) *
1* Co. J. Korelc 2007 17 Jul 08 22:29:52%*
!**
! User : USER

! Evaluation time : 0s Mode : Debug

! Number of formulae HE Method: Automatic

! Subroutine : Test size :7

! Total size of Mathematica code : 7 subexpressions

! Total size of Fortran code : 253 bytes

!******************* S U B R O U T I N E ***%kkkkkhkhkhkhkhhhhhhhhhkrk
SUBROUTINE Test (V)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(5001)

11 =x
v(1)=0.3141592653589793d1

11 =x
v(1)=0.9869604401089358d1
END

User Interface

An important question arises: how to understand the automatically generated formulae? The automatically generated
code should not act like a "black box". For example, after using the automatic differentiation tools we have no insight in
the actual structure of the derivatives. While formulae are derived automatically with AceGen, AceGen tries to find the
actual meaning of the auxiliary variables and assigns appropriate names. By asking Mathematica in an interactive
dialog about certain symbols, we can retain this information and explore the structure of the generated expressions. In
the following AceGen sessions various possibilities how to explore the structure of the program are presented.

Example

Let start with the subprogram that returns solution to the system of the following nonlinear equa-
tions

o={5")

where x and y are unknowns and a is the parameter using the standard Newton-Raphson iterative procedure. The
SMSSetBreak function inserts the breaks points with the identifications "X" and "A" into the generated code.

36

AceGen code generator

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica", "Mode" - "Debug"];

SMSModule["test", Real[x$$, y$$, as$$, tol$$], Integer[nmaxss]];
{x0, yO, a, €} +r SMSReal[{x$$, y$$, a$$, tolss}];
nmax + SMSInteger [nmax$$];
{x, y} a2 {x0, yO};
sMsDo |
T E {a xy+x3,a- xyz};
Kt F SMSD[&, {x, Y}];
{Ax, Ay} E SMSLinearSolve[Kt, -&];
{x, vy} {x, v} + {8x, AY};
SMSIf[SMSSqrt[{Ax, Ay}.{Ax, Ay}] < €
, SMSExport[{x, y}, {x$$, y$$}1;
SMSBreak|[];
1i
SMSIf[i == nmax
, SMSPrintMessage["no convergion"];
SMSReturn|[];
17
, {1, 1, nmax, 1, {x, v}}
E

SMSWrite[];
time=0 variable= 0 = {}
[0] Consistency check - global
[0] Consistency check - expressions
[0] Generate source code :
Events: 0

[0] Final formating

File: test.m Size: 2491
Methods No.Formulae No.Leafs
test 33 198

Exploring the structure of the formula - Browser mode submenu

AceGen palette offers buttons that control how expressions are represented on a screen.

AceGen code generator 37

A L O I

Expand zelected vanable |v|

Wiew
Expand zelected cell
¢ &. 314
& Expand zelected vanable
C Full O o5 Analyze selected varable
Expand selected variable ‘ v |
Shaow shortest tag |v|
Show shortest tag ’vl Shenishoesttag
Precision I : v I Show last tag
: Show firzt tag -
Open code profile | S ellErs

Chabiia

Palette for entering AceGen commands that control user-AceGen interactions.

Auxiliary variables are represented as active areas (buttons) of the output form of the expressions in blue color. When
we point with the mouse on one of the active areas, a new cell in the notebook is generated and the definition of the
pointed variable will be displayed. Auxiliary variables are again represented as active areas and can be further explored.
Definitions of the external variables are displayed in red color. The ";" character is used to indicate derivatives (e.g

q)'l'yl Z%)

Kt[[1, 1]]

Kt11|
Ve Uil A @ P Uniiidet - 323 V] Uittt

nisl= K1, 111 — | npsp= Ke[[1, 111 — | npsi= Ke[[1, 11
Out[zs]= Kty Out[zs]= Kty Out[25]= K3
3 () +a (p7) 3 () Al
agg

[[

There are two possibilities how the new cell is generated. The first possibility is that the new cell contains only the
definition of the pointed variable.

Expand selected wariable

Button:

38 AceGen code generator

Kt

(K], Koo}, =Ko, Kisaly)
{{z2x - al 5vl, Ktasl}, (- =Ktaal, Kiaol})

The new cell can also contain the whole expression from the original cell and only pointed variable replaced by its
definition.

I Expand selected cell
Button:

Kt

({Ktaal, Ktasl}, {- =Ktaa], Kiss]))

3 ox+ al v

The new cell can also contain detailed information about selected variables.

Button: Analvze selected variable

Kt

H Kt11|, Kt ')l}, {——Kt'nl, Kt')')l}}

Variable=$V[12, 1] Tags= Kty | @1;x

Definition= 3 MZ + ﬂ M

Position in program={1, 2, 9, 2, 7} Position in data base=14 Module=1

Skope:{Do[ﬂ, 1, nSS, l]}

Type=Real Singlevalued=True No. of instances=1 Stochastic values={1.22245}
Defined derivatives={}

Output representations of the expressions

Expressions can be displayed in several ways. The way how the expression is displayed does not affect the internal
representation of the expression.

StandardForm

The most common is the representation of the expression where the automatically generated name represents particular
auxiliary variable.

%

Button:

Kt

({Ktaal, Ktasl}, {- =Ktaa], Kiss]))

FullForm

The "true" or FullForm representation is when j-th instance of the i-th auxiliary variable is represented in a form
$V[i,j]. In an automatically generated source code the i-th term of the global vector of auxiliary variables (v(i)) directly

AceGen code generator 39

corresponds to the $V/i,j] auxiliary variable.

" Full

Button:
Kt

{{$v[12, 1], sVv[14, 1]}, {-$V[13, 1], $V[15, 1]}}

CondensedForm

If variables are in a FullForm they can not be further explored. Alternative representation where j-th instance of the i-
th auxiliary variable is represented in a form ;¥; enables us to explore FullForm of the automatically generated

expressions.

¥

Button:

Kt

=

, ¥4

b (- ¥l

NumberForm

Auxiliary variables can also be represented by their signatures (assigned random numbers) during the AceGen session
or by their current values during the execution of the automatically generated code. This type of representation is used
for debugging.

314

Button:

Kt

{{1.2224526, 0.44704429}, {-0.025662073, -0.19439409}}

Polymorphism of the generated formulae - Variable tags submenu
Sometimes AceGen finds more that one meaning (tag) for the same auxiliary variable. By default it displays the shortest

tag (Shaw shartest tag)

Kt

, Kti»

({Ktiy b {-=Ktoa], Kool

By pressing button Show first tag the last found meaning (name) of the auxiliary variables will be displayed.

Kt
({Ktra], Ktio]}, (- =@, Kiool})

All meanings (names) of the auxiliary variables can also be explored (Show alltags |
Kt
([Kti1 @], Ktio (@1}, [~ =@ | =Kbo1, Ktoo [@5]}]

AceGen code generator

40

Analyzing the structure of the program

Open code profile
button can be used in order to produce separate window where the structure

The
of the program is displayed together with the links to all generated formulae.
| code profile palette | | code profile display |
Profile controlsSSES N # Profile

Close I Update | test |

Wiew "l"l O xOw0aeqx gy @
l,nz5,1

Do | =

Cutlining 'l Y.
Include |+ | $1 42 Kbyg Kbyz Ktz By A -
£ &
[1 + Ly] < £
r“' Ay | WG =
browse formulae E g 1'
O spla
varible 15 pariable
Instance 1 -
&y\ #3,, C Sz 19 e o
e . e [l B3 sl
ST Position 20 Frint['no convergion']
_TRaw Beturn[MNull ,Module] ;
Kt o
E———— -kkz1 &
Ko - Kby ¥y - ——ot 1 g Endlf
KE11
Kz -
ke KEz2 -Kb1z Yie
3 2 : + 3
aff

Run time debugging
The code profile window is also used for the run-time debugging. See Run Time Debugging section for details.

AceGen code generator 41

Verification of Automatically Generated Code

We can verify the correctness of the generated code directly in Mathematica. To do this, we need to rerun the problem
and to generate the code in a script language of Mathematica. The SMSSetBreak function inserts a break point into the
generated code where the program stops and enters interactive debugger (see also User Interface).

<< AceGen";
SMSInitialize["test", "Language" -> "Mathematica", "Mode" -> "Debug"];
SMSModule["Test", Real[u$$[3], x$$, LSS, g$$[3111;
{x, L} r {SMSReal[x$$], SMSReal [L$$]};
ui + Table[SMSReal[u$$[i]], {i, 3}];
x X X x
Ni:{—, 1-—, — (1——]};
L L L L
ueNi.uij;
fE uz;
gESMSD[f, ui];
SMSExport[g, g$$];
SMSWrite[];

time=0 variable= 0 = {}

[0] Consistency check - global

[0] Consistency check - expressions
[0] Generate source code :

Events: 0

[0] Final formating

File: test.m Size: 1348
Methods No.Formulae No.Leafs
Test 16 117

We have several possibilities how to explore the derived formulae and generated code and how to verify the correctness
of the model and of the generated code (see also User Interface).

The first possibility is to explore the generated formulae interactively with Mathematica in order to
see whether their structure is logical.

ul

Open code prafile

In the case of more complex code, the code profile profile can be explored (
where the structure of the program is displayed together with the links to all generated formulae (see also User
Interface).

The second possibility is to make some numerical tests and see whether the numerical results are
logical.

This reads definition of the automatically generated "Test" function from the test.m file.

<<"test.m"

Here the numerical values of the input parameters are defined.

42 AceGen code generator

The context of the symbols used in the definition of the subroutine is global as well as the context of the input parameters. Conse-
quently, the new definition would override the ald ones. Thus the names of the arguments cannot be the same as the symbols used
in the definition of the subroutine.

xv=7m; Lv=10.; uv={0., 1., 7.}; gv = {Null, Null, Null};

Here the generated code is used to calculate gradient for the numerical test example.

Test[uv, xv, Lv, gv]

Here the numerical results are displayed.
gv
{1.37858, 3.00958, 0.945489}

Partial evaluation, where part of expressions is numerically evaluated and part is left in a symbolic form, can also
provide useful information.

Here the numerical values of u, and x input parameters are defined, while L is left in a symbolic form.

xv=n//N;Lv=.; uv={0.,1., 7.}; gv = {Null, Null, Null};

Here the generated code is used to calculate gradient for the given values of input parameters.

Test[uv, xv, Lv, gv]

Here the partially evaluated gradient is displayed.
gv // Expand

434.088 118.435 6.28319
{— + + ,
Lv? Lv? Lv
434.088 256.61 31.4159 1363.73 806.163 98.696 6.28319

2.+ + ’ + + }
Lv? Lv? Lv Lv? Lv? Lv? Lv

AceGen code generator 43

The third possibility is to compare the numerical results obtained by AceGen with the results
obtained directly by Mathematica.

Here the gradient is calculated directly by Mathematica with essentially the same procedure as before. AceGen functions are
removed and replaced with the equivalent functions in Mathematica.

Clear[x, L, up, g];

{x, L} = {x, L};

ui = Array[up, 3];

Ni={x/L,1-x/L,x/L(1-%x/L)};

u=Ni.uij;

f=ut2;

g =Map[D[f, #] &, ui] // Simplify

4

2x (L2up[2] -x?up[3] +Lx (up[1l] -up[2] +up[3]))
{ .
2 (L-x) (L?up[2] -x?up[3] +Lx (up[1] -up[2] +up([3]))

4

L3
2 (L-x) x (L?up[2] -x*up[3] +Lx (up[1] -up[2] +up[3]))

o J

Here the numerical results are calculated and displayed for the same numerical example as before. We can se that we get the same
results.

x=7m; L=10; up[1l] =0; up[2] =1; up[3] =7.;
g

{1.37858, 3.00958, 0.945489}

The last possibility is to look at the generated code directly.

Due to the option "Mode"->"Debug" AceGen automatically generates comments that describe the actual meaning of
the generated formulae. The code is also less optimized and it can be a bit more easily understood and explored.

44

AceGen code generator

FilePrint["test.m"]

(***

* AceGen 2.103 Windows (17 Jul 08) *
* Co. J. Korelc 2007 17 Jul 08 22:41:00%*

hhkhkhkhkhkhhhkhhhhhkhhhhhkhkhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhkhkhkhkhkkk*x

User : USER

Evaluation time : 0 s Mode : Debug
Number of formulae : 16 Method: Automatic
Module : Test size : 117

Total size of Mathematica code : 117 subexpressions *)

(*********************** M O D U L E **************************)
SetAttributes[Test,HoldAll];
Test[u$$_,x$$_,L$$_,g$$_]:=Module[{},
SMSExecuteBreakPoint["1","test",1,11;

$VV[1]1=0; (*debug*)

(*2= x *)
SVV[2]=x$$;
(¥3= L *)

S$VV[3]=L$S$;

(*4= ui_1 *)
$VV[4]=us$s$[[1]1];

(*5= ui_2 *)
SVV[5]=u$s([2]];

(*6= ui_3 *)
$VV[6]1=us$sS[[31];

(*7= Ni_1 *)
SVV[7]=$VV[2]/$VV[3];
(*8= Ni_2 *)
$VV[8]=1-SVV[7];

(*¥9= Ni_3 *)
SVV[9]=(SVV[2]*$VV[8])/$VV[3];

(*10= u *)
SVV[10]=$VV[4]1*SVV[T]+$VV[5]*SVV[B]+$VV[6]*S$VV[I];
(*11= £ *)

$VV[11]=$VV[10]"2;

(*12= [g_1l][£f_j;ui_1] *)
$VV[12]1=2*$VV[7]*$VV[10];
(*13= [g_2][f_jui_2] *)
$VV[13]=2*$VV[8]*$VV[10];
(*14= [g_3][f_jui 3] *)
SVV[14]1=2*$VV[9]*$VV[10];
g$$[1l]1]1=$vv[1i2];
g$$[[2]]1=$VV[13];
g$$[[3]11=$vv[14];
S$VV[15]1=0; (*debug*)
SMSExecuteBreakPoint["2","test",1,2];
$VV[16]=0; (*debug*)

17

Several modifications of the above procedures are possible.

Program Flow Control

AceGen can automatically generate conditionals (SMSIf, SMSSwitch, SMSWhich constructs) and loops (SMSDo
construct). The program structure specified by the conditionals and loops is created simultaneously during the AceGen
session and it will appear as a part of automatically generated code in a specified language. All other conditional and
loop structures have to be manually replaced by the equivalent forms consisting only of If and Do statements. It is
important to notice that only the replaced conditionals and loops produce corresponding conditionals and loops in the
generated code and are evaluated when the generated program is executed. The conditional and loops that are left
unchanged are evaluated directly in Mathematica during the AceGen session.Additionally, we can include parts of the

AceGen code generator 45

final source code verbatim (SMSVerbatim statement).

The control structures in Mathematica have to be completely located inside one notebook cell (e.g. loop cannot start in
once cell and end in another cell). Thus, the following input is in Mathematica incorrect

Do[Print[i]
{i, 1, 5}

AceGen extends the functionality of Mathematica with the cross-cell form of If and Do control structures. Previous
example can be written by using cross-cell form Do construct as follows

SMSDo[i, 1, 5]
SMSPrintMessage[i];
SMSEndDo[]

and using in-cell form as
SMSDo[Print[i], {i, 1, 5}]

See also: SMSIf, SMSElse, SMSEndIf, SMSSwitch, SMSWhich, SMSVerbatim, SMSDo, SMSEndDo.

Example 1: Gauss integration

Generation of the Fortran subroutine calculates the integral jf x2+28in[x3]clx by employing Gauss integration

scheme. The source code is written in FORTRAN language. The input for the subroutine are the Gauss points and the
Gauss weights defined on interval [-1,1] and an integration interval [a,b].

46

AceGen code generator

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[gp$$[ng$S], wg$S$[ng$s$S], as$, bs$, r$$], Integer[ngs]];
{a, b} + SMSReal[{a$$, bS}];
ng + SMSInteger [ng$$];
intga10;

SMSDo [

{9, wg} r SMSReal[{gpS[i], wg$$[i]}];

a+b 1
+; (-a+b) &g;

XE
2

1
Jgr— (-a+b);
2

intg 4 intg + wg Jg (x2 +2 Sin[x3]) ;

; {i, 1, ng, 1, intg}];

SMSExport[intg, r$$];
SMSWrite[];
FilePrint["test.f"]

File: test.f Size: 1028
Methods No.Formulae No.Leafs
test 7 82

IEE R R R EEEEEEREREEEEREREREEREREREREEEEREREREEREREREEEEEEEER SRS

!* AceGen 2.502 Windows (24 Nov 10) *
1% Co. J. Korelc 2007 29 Nov 10 15:03:23+*
!**
! User : Full professional version
Evaluation time
Number of formulae

! 0 s Mode : Optimal
!

! Subroutine

!

!

7 Method: Automatic
test size :82

82 subexpressions

438 bytes

Total size of Mathematica code
Total size of Fortran code

lhkdhkdhkdhkkhkkhkkdxdkxk k* % § U B R O UT I NE **kkdhkdhkhhhhhdhdhhhhdx

SUBROUTINE test(v,gp,wg,a,b,r,nqg)

IMPLICIT NONE

include 'sms.h'

INTEGER ng,i3,i5

DOUBLE PRECISION v(5005),gp(ng),wg(ng),a,b,r
v(9)=-a+b

v(10)=v(9)/2d0

i3=int(ng)

v(4)=0d0

DO i5=1,1i3

v(8)=(at+b+gp(i5)*v(9))/2d0
V(4)=v(4)+v(10)*wg(i5)* ((v(8)*v(8))+2d0*dsin(v(8)**3))
ENDDO

r=v(4)

END

Example 1: Newton-Raphson (in-cell form)

The generation of the Mathematica subroutine that calculates the zero of function f(x) =x? + 2 Sin [x3]by using

Newton-Raphson iterative procedure.

AceGen code generator

47

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test", Real [x0$$, r$$1];

x 3 SMSReal [x0$$];

SMSDo [

f|=x2+28in[x3];

£
dxg - ——mmm;
SMSD[£, x]

x4 x+dx;
SMSIf[Abs[dx] < .00000001, sMSBreak[];];

SMSIf[i == 15, SMSPrintMessage["no convergence"]; SMSReturn[];];
, {1, 1,30, 1, (x}}];
SMSExport[x, r$$];

SMSWrite[];
FilePrint["test.m"]

Method : 1:63551: 9 formulae, 61 sub-expressions

[0] File created : teSt o IMl size : 969

(***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 16:36:45*

EEE R E RS R R SRS E R RS R RS R R R R SRR R R R R R R RS

User : USER

Evaluation time : 0 s Mode : Optimal
Number of formulae : 9 Method: Automatic
Module : test size : 61

Total size of Mathematica code : 61 subexpressions *)

(*********************** MODUTLE **************************)

SetAttributes[test,HoldAll];
test[x0$$,r$$]:=Module[{},
$VV[1]=x08$;

Do[

SVV[5]=$VV[1]"2;

$VV[4]=$VV[1]"3;

SVV[7]==((2*Sin[SVV[4]]+SVV[5])/(2*SVV[1]+6*Cos[SVV[4]]1*SVV[5]));

SVV[1]=$VV[1]1+SVV[7];

If[Abs[$VV[7]] < 0.1*10"-7,

Break[];

1; (* endif *)

If[$VV[2]==15,

Print["no convergence"];

Return[Null,Module];

1; (* endif *)
,{$vv[21,1,30,1}]; (*EndDo*)
r$$=svv([l];
1i

Example 1: Newton-Raphson (cross-cell form)

48

AceGen code generator

The generation of the C subroutine calculates the zero of function f(x) =x% + 2 Sin [x3] by using Newton-Raphson

iterative procedure. The formulation is the same as before exept the "cross-cell" form of the control structure is used
insted of the "in-cell" form.

This initializes the AceGen system and starts description of the "test" subroutine.

<< AceGen" ;

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real [x0$$, r$$]1];
x 4 SMSReal [x0$$];

SMSDo[i, 1, 30, 1, {x}];

f|=x2+zsin[x3];

dx E -

£

—_—
SMSD[£, x]

x4 x+dx;

SMSIf[Abs[dx] < .00000001] ;

SMSBreak[];

SMSEndIf[];

SMSIf[i == 15];
SMSPrint["no convergence"]
SMSReturn|[];

SMSEndIf[];

True

SMSEndDo [x] ;

SMSExport[x, r$$];
SMSWrite[];

Method : teSt 9 formulae, 61 sub-expressions

[1]

File created : tESt ° C Size : 1015

AceGen code generator 49

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (17 Jul 08) *
* Co. J. Korelc 2007 17 Jul 08 23:57:50%*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
User : USER
Evaluation time
Number of formulae

ls Mode : Optimal
9 Method: Automatic

s es es e

Subroutine test size :61
Total size of Mathematica code 61 subexpressions
Total size of C code : 436 bytes*/

#include "sms.h"

[hrkkkkkkxkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkkhkkkkxkk/
void test(double v[5005],double (*x0),double (*r))
{
int i2,b8,bl1l0;
v[1]=(*x0);
for(i2=1;i2<=30;i2++){
v[5]=(v[1]*v[1]);
v[4]=Power(v[1l],3);
v[71==((v[5]+2e0*sin(v[4]))/(2e0*v[1]+6e0*v[5]*cos(V[4])));
v[il]=v[1l]+v[7];
if(fabs(v[7])<0.1le-7){
break;
} else {
}i
if(i2==15){
printf("\n%s
return;
} else {
}i
};/* end for */
(*r)=v[1];
b

,"no convergence");

Symbolic-Numeric Interface

A general way of how to pass data from the main program into the automatically generated routine and how to get the
results back to the main program is through external variables. External variables are used to establish the interface
between the numerical environment and the automatically generated code.

External variables appear in a list of input/output parameters of the declaration of the subroutine, as a part of expres-
sion, and when the values are assigned to the output parameters of the subroutine.

50 AceGen code generator

definition of the input/output parameters example

SMSModule["name",
Real[real variables],
Integer[integer type variables],
Logical[logical variables]]

SMSModule["test" Real[y$$[2,5]1]

external variables as a part of expression example

SMSReal[real external data]

y £ 2 Sin[SMSReal[y$$[2,5]1]
i E SMSInteger[ii$$]
1 E SMSLogical[bool$$] && y<0

SMSInteger[integer external data]
SMSLogical[logical data]

exporting values example

SMSExport[value, real external] SMSExport[x+5, y$$[2,5]]
SMSExport[2 i+7, ii$$]

SMSExport[True, bool$$]

SMSExport[value, integer external]

SMSExport[value, logical external]

se of external variables.

The form of the external variables is prescribed and is characterized by the $ signs at the end of its name. The standard
AceGen form is automatically transformed into the chosen language when the code is generated. The standard formats
for external variables when they appear as part of subroutine declaration and their transformation into FORTRAN and
C language declarations are as follows:

type AceGen definition FORTRAN definition C definition
real variable x$$ realx 8 x double #x
x$$$ reals 8 x double x
real array x$$[10] realx 8 x (10) double x[10]
x$S[i$S$, "="] reals 8 x (i,%) double sxx
x3(3, 5] realx 8 x (3,5) double x[3][5]
integer variable i$$ integer i int *i
i$$$ integer i int i
integer array i$$[10] integer x (10) int i[10]
i$8[i8$, "«"] integer x (i,%) int sxi
i$$[3.5,7] integer x (3,5,7) int 1[3][5][7]
logical variable 1$$ logical 1 int 1
1$$$ logical 1 int

xternal variables in a subroutine declaration.

Arrays can have arbitrary number of dimensions. The dimension can be an integer constant, an integer external variable
or a "*" character constant. The "*" character stands for the unknown dimension.

The standard format for external variables when they appear as part of expression and their transformation into FOR-
TRAN and C language formats is then:

AceGen code generator

51

type AceGen form FORTRAN form C form
real variable SMSReal[x$$] X *X
SMSReal[x$$$] X X
real array SMSReal[x$$[10]] x (10) x[10]
SMSReal[x$$[i$$, "—>name" ,5]] illegal x[i—1]—>name[5]
SMSReal[x$$[i$$, ".name",5]] illegal x[i—1].name[5]
integer variable SMSInteger[i$$] i 1
SMSInteger[i$$$] i i
integer array SMSInteger[i$$[10]] 1(10) i[10]
SMSInteger[i$$["10"]] i(10) i[10]
SMSInteger[i$$[j$$, "—>name" ,5]] illegal i[j—1]—>name[5]
SMSInteger[i$$[j$$, ".name",5]] illegal i[j—1].namel[5]
logical variable SMSLogical[1$$] 1]
SMSLogical[1$$$] 1 1

xternal variables as a part of expression.

A characteristic high precision real type number called "signature" is assigned to each external variable. This characteris-
tic real number is then used throughout the AceGen session for the evaluation of the expressions. If the expression
contains parts which cannot be evaluated with the given signatures of external variables, then AceGen reports an error
and aborts the execution.

External variable is represented by the data object with the head SMSExternalF . This data object represents external
expressions together with the information regarding signature and the type of variable.

See also: SMSReal, SMSExport.

Automatic Differentiation

Theory of Automatic Differentiation

Differentiation is an algebraic operation that plays crucial role in the development of new numerical procedures. We
can easily recognize some areas of numerical analysis where the problem of analytical differentiation is emphasized:

= evaluation of consistent tangent matrices for non-standard physical models,
> sensitivity analysis according to arbitrary parameters,

= optimization problems,

> inverse analysis.

In all these cases, the general theoretical solution to obtain exact derivatives is still under consideration and numerical
differentiation is often used instead. The automatic differentiation generates a program code for the derivative from a
code for the basic function.

Throughout this section we consider function y=f{v) that is defined by a given sequence of formulae of the following
form

Fori=n+1,n+2,..m

vi = fi(v)) jeA,

52 AceGen code generator

Here functions f; depend on the already computed quantities v;. This is equivalent to the vector of formulae in AceGen
where v; are auxiliary variables. For functions composed from elementary operations, a gradient can be derived automat-

ically by the use of symbolic derivation with Mathematica. Let v;,i=1...n be a set of independent variables and v;,

i=n+1,n+2,....m a set of auxiliary variables. The goal is to calculate the gradient of y with respect to the set of indepen-
dent variables Yy = {ﬂ o

v’ vy’

variables. Two approaches can be used for this, often recalled as forward and reverse mode of automatic differentiation.

v 6—3 }. To do this we must resolve dependencies due to the implicitly contained

The forward mode accumulates the derivatives of auxiliary variables with respect to the independent variables. Denot-
ing by Vv; the gradient of v;with respect to the independent variables v;, j=1...n, we derive from the original

sequence of formulae by the chain rule:
Vv = {6]&»}/_:1’2 """" , fori=12,..n

Fori=n+1,n+2,...m

i1 Of;
V=g Ly,

Vo,
V)’=va

In practical cases gradients Y v; are more or less sparse. This sparsity is considered automatically by the simultaneous
simplification procedure.

In contrast to the forward mode, the reverse mode propagates adjoints, that is, the derivatives of the final values, with
respect to auxiliary variables. First we associate the scalar derivative v; with each auxiliary variable v;.

5=

Vi = for i=m,m-1,....n
av;

Vy = {%} =} fori=12,..n

As a consequence of the chain rule it can be shown that these adjoint quantities satisfy the relation

.=\ % Y
VisLij=iv1 G, Vi

To propagate adjoints, we have to reverse the flow of the program, starting with the last function first as follows
Fori=mm-1,...,n-1
afy —

—om
Vi=2ij=is1 g, Vi

Vy={vivz,...vn}

Again, simultaneous simplification improves the efficiency for the reverse mode by taking into account the actual
dependency between variables.

The following simple example shows how the presented procedure actually works. Let us define three functions

. . . . v
fi» f2, f3, dependent on independent variables x;. The forward mode for the evaluation of gradient Y v3 = {a—3 } leads to
X
3 of,
vy =1 (xp) =2 i=1,2, ..,n
0x; 0x;
v, of, of, dv .
Vo =1 (x5, vy) =242 i=1,2, ..,n
9x; 0x; vy 0x;
9 of, Ofy oy 0 .
v3 =13 (Xj, V2, V3) A I I A QL i=1,2, ..,n.
N N 0x; 0x; vy 0x; vy 0x;

AceGen code generator 53

The reverse mode is implemented as follows

vy =13 (X, v, v3) V3= o, =1

Vo =15 (X, vy) V2=Z_: =:_i32V3

vy =11 (%)) 71=Z_::T=j_:73+§_272

X; %:%V”Z_EVZ*Z_QVI i=1,2, ..

By comparing both techniques, it is obvious that the reverse mode leads to a more efficient solution.

The SMSD function in AceGen does automatic differentiation by using forward or backward mode of automatic
differentiation. The procedure implemented in the AceGen system represents a special version of automatic differentia-
tion technique. The vector of the new auxiliary variables, generated during the simultaneous simplification of the
expressions, is a kind of pseudo code, which makes the automatic differentiation with AceGen possible. There are
several situations when the formulae and the program structure alone are not sufficient to make proper derivative code.
These exceptions are described in chapter Exceptions in Differentiation.

AceGen uses Mathematica's symbolic differentiation functions for the differentiation of explicit parts of the expression.
The version of reverse or forward mode of 'automatic differentiation' technique is then employed on the global level for
the collection and expression of derivatives of the variables which are implicitly contained in the auxiliary variables. At
both steps, additional optimization of expressions is performed simultaneously.

Higher order derivatives are difficult to be implemented by standard automatic differentiation tools. Most of the
automatic differentiation tools offer only the first derivatives. When derivatives are derived by AceGen, the results and
all the auxiliary formulae are stored on a global vector of formulae where they act as any other formula entered by the
user. Thus, there is no limitation in AceGen concerning the number of derivatives which are to be derived.

SMSD function

SMSDJexp.v] partial derivative “=

SMSD[exp,{vI,v2,..}] gradient of exp {ﬁ;x” e }
vy Vs

dexp.
SMSD[{expl,exp2,..},{vI,v2,..}] the Jacobian matrix Jz[T”]
SMSD[exp,{{v] 1V12se - 1{Va1 V22,) .}] differentiation of scalar with respect to matrix [%]
Vi

SMSD[exp,{vi,v2,...}, index] create a characteristic expression for an arbitrary element of

. dexp Oexp
the gradlent{ oy,

represents characteristic element of the gradient with the index index

} and return an index data object that

SMSD[exp, acegenarray, index] create a characteristic expression for an arbitrary element of
. a
the gradient { =

—_— } and return an index data object that
dacegenarray

represents characteristic element of the gradient with the index index

SMSD[exp_structure,var_structure] differentiation of an arbitrary exp_structure
with respect to an arbitrary var_structure.

dexp_st
The result Z2=""™" haq the same global structure as the exp_structi

Ovar_structure
. dex,
with each scalar exp replaced by the substructure P .
Ovar_structure
. afi;\
(e.g. derivatives of second order tensors can be generated D;, j!k,lzﬁ)
k.l

Automatic differentiation procedures.

54 AceGen code generator

option name default value

"Constant"—>{vIv2,...} {} perform differentiation under assumption
that formulas involved do not depend on
given variables (directional derivative)

"Constant"—>v = "Constant"—>{v}

"Method"—>ADmode " Automatic" Method used to perform differentiation:
"Forward" = forward mode of automatic differentiation
"Backward" = backward mode of automatic differentiation
"Automatic" =
appropriate AD mode is selected automatically

"Dependency"—> {} during differentiation assume that derivative of

{, . ,{v,z ,‘;—Z },} auxiliary variable v with respect to auxiliary variable
z1is % (for the detailed syntax see SMSFreeze ,
note that, contrary to the SMSFreeze command ,

in the case of SMSD command the
independent variables have to specified explicitly)

"Symmetric"—>truefalse False see example below

"Ignore"—>crit (False&) If differentiation is performed with respect to matrix
then the elements of the matrix for which crit[e]
yields False are ignored (NumberQ[exp] yields True).
(see example "Differentiation with respect to matrix")

"PartialDerivatives"—> False whether to account also for partial derivatives of

truefalse auxiliary variables with respect to arbitrary auxiliary
variable defined by SMSDefineDerivatives command
(by default only total derivatives of auxiliary variables
with respect to independent variables are accounted for)
TO BE USED ONLY BY THE ADVANCED USERS!!

Options for SMSD.

The argument index is an integer type auxiliary variable, array is an auxiliary variable that represents an array data
object (the SMSArray function returns an array data object, not an auxiliary variable), and arrayindex is an auxiliary
variable that represents index data object (see Arrays).

Sometimes differentiation with respect to intermediate auxiliary variables can lead to incorrect results due to the
interaction of automatic differentiation and Expression Optimization. In order to prevent this, all the basic independent
variables have to have an unique signature. Functions such as SMSFreeze, SMSReal, and SMSFictive return an
auxiliary variable with the unique signature.

Differentiation: Mathematica syntax versus AceGen syntax

The standard Mathematica syntax is compared hare with the equivalent AceGen Syntax.

Mathematica

Clear[x, y, z, k];
f=x+2y+3z+4k

4k+x+2y+32z

e Partial derivative: %

AceGen code generator 55

D[f, x]

1

e Gradient: Y, = %
J

D[f, {{x, ¥, z, k}}]
{1, 2,3, 4}

. af;
® Jacobian: J; ; = af
J

D[{f, £72}, {{x, y}}] // MatrixForm

1 2

2 (4k+x+2y+32) 4 (4k+x+2y+32)
. 0fij
® Derivatives of second order tensors: D; jx; = 5=
k.l

D[{{f, £72}, {£73, £74}}, {{{x, v}, {2z, k}}}] // MatrixForm

(1 2) (2(4k+x+2y+3z) (4k+x+2y+32)
3 4 6 (4k+x+2y+32) (4k+x+2y+32)

3(4k+x+2y+32)%2 6 (4k+x+2y~+32)2 4 (4k+x+2y+32)3 8 (4k+x+2y+32z2)?
9 (4k+x+2y+32)% 12 (4k+x+2y+32)? 12 (4k+x+2y+32)3 16 (4k+x+2y+32z)

4
8

AceGen

<< AceGen" ;

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, yvS, 2$$, kS11;
{x, v, z, k} r SMSReal [{x$$, y$$, 258, k$$}1;
fex+2y+3z+4k;

e Partial derivative: g—i

dx £ SMSD[f, x]

1

e Gradient: Y, = %
J

Note that in Mathematica the vector of independent variables has an extra bracket. This is
due to the legacy problems with the Mathematica syntax.

VYxeSMSD[f, {x, v, z}]
{1, 2, 3}

. of;
® Jacobian: J; ; = 6—;
J

Jx e SMSD[{f, £72}, {x, y}]

[, 2y, {M M}}

56

AceGen code generator

SMSRestore[Jx, "Global"] // MatrixForm

2 [4ﬂ+ﬁ+zﬂ+3ﬂ) 4 [4ﬂ+ﬁ+zﬂ+3ﬁ)

Ofij
Bxk,,

e Derivatives of second order tensors: D; jy; =

Dx £ SMSD[{{£, £°2}, {£"3, £°4}}, {{x, v}, {2, k}}]

({111, 23, 3, 00, {{dxaal, 1x05l}, {DX1551], Dx1220}}],
{{{DXNHL Dx711o|}, {Dxa1a1|, DX')1')7|}},
{{DX’)')11|, ona1o|}, {onm1|, Dxmm|}}}}

(1 2) 2(4M+X+2V+3ﬂ] 4[4.
* o[aklex-2uloazl) oo
3(4M+ﬁ+zﬂ+3j]z e(4ﬂ+ﬁ+zﬂ+3j]z q%mmﬁf o s
9(4M+ﬁ+zﬂ+3ﬁ]2 12 [4M+ﬁ+zﬂ+3ﬂ)z 12 [4M+ﬁ+zﬂ+3ﬁ]3 16 s

See also SMSD for additional examples.

Examples

Example 1: Simple C subroutine

Generation of the C subroutine which evaluates derivative of function z(x) with respect to x.

72(x)=3x?+2y+Log[y]

y(x) = Sin[xz].

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, r$$11];

X + SMSReal [xS];

v £ Sin[x?];

z=|3x2+2y+Log[y];

Here the derivative of z with respect to x is calculated.

zx £ SMSD[z, x];

AceGen code generator

SMSExport[zx, r$$];
SMSWrite[];

File: test.c Size: 817
Methods No.Formulae No.Leafs
test 4 38

FilePrint["test.c"]

/***

* AceGen 3.305 Windows (6 Jul 12) *
* Co. J. Korelc 2007 6 Jul 12 19:59:17 *
SRR R SR S S R R R R R S S R R R R R R R R R R R R SRR T Sk R R R R
User : USER

Notebook : AceGenSymbols.nb

Evaluation time : 0s Mode : Optimal

Number of formulae 4 Method: Automatic

Subroutine : test size :38
Total size of Mathematica code : 38 subexpressions
Total size of C code : 219 bytes*/

#include "sms.h"

[*hkkkkkkkkkkxkkxkx* *x S U B R O UT I NE ***xkkkkkkhkhkhxhxdhxdx/
void test(double v[5001],double (*x),double (*r))

{

v[10]=Power((*x),2);

v[91=2e0*(*x);

v[6]=v[9]*cos(v[10]);
(*r)=3e0*v[9]+v[6]*(2e0+1e0/sin(v[10]));
}i

Example 2: Differentiation of complex program structure

Generation of the C function file which evaluates derivative of function f(x) = 3 z> with respect to x, where 7 is
x*+2y+Logly] x>0
wx) = 5 ;
Cos|x*| x<0

andyisy= Sin[xQ].

58

AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, r$$1];
X SMSReal [x$$];
z hSMSIf[x >0
’ yl:Sin[xz];
3x2+2y+Log[y]
, Cos[x3]
]
fxn:SMSD[3 z2, x];
SMSExport[fx, r$$];
SMSWrite[];
FilePrint["test.c"]

File: test.c Size: 1016
Methods No.Formulae No.Leafs
test 11 88

/***

* AceGen 3.305 Windows (6 Jul 12) *
* Co. J. Korelc 2007 6 Jul 12 19:59:43 *
kkhkhkkkhkkkkhhkkhkkhkkhkhkkhhkkhhkhhkkhkhhkhkhhkkhhkkhhkhhkdhhkhkhhkkhhkkhhkxkhhkdkkdkkhx**%
User : USER

Notebook : AceGenSymbols.nb
Evaluation time
Number of formulae

0 s Mode : Optimal
11 Method: Automatic

Subroutine test size :88
Total size of Mathematica code 88 subexpressions
Total size of C code : 407 bytes*/
#include "sms.h"

[hrkkkkkkkkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkkhkkkkkkk/
void test(double v[5001],double (*x),double (*r))
{

int b2;
v[13]=Power((*x),2);
v[16]=3e0*v[13];

if((*x)>0e0){

v[14]1=2e0*(*x);

v[7]1=v[1l4]*cos(Vv[13]);

v[3]=sin(v[13]);
v[8]=3e0*v[14]+(2e0+1e0/v[3])*V[7];
v[5]=v[16]+2e0*v[3]+1log(Vv[3]);

} else {

v[15]=Power((*x),3);

v[8]=-(v[16]*sin(v[15]));

v[5]=cos(v[15]);

}i

(*r)=6e0*v[5]*v[8];

}i

Example 3: Differentiation with respect to symmetric matrix

The differentiation of a scalar value with respect to the matrix of differentiation variables can be nontrivial if the matrix
has a special structure.

If the scalar value exp(M) depends on a symmetric matrix of independent variables

AceGen code generator 59

Viz V22

Vii Vi]

then we have to possibilities to make proper differentiation:

A) the original matrix M can be replaced by the new matrix of unique variables
MFESMSFreeze[M];

oexpeSMSD[exp(MF) MF };

B) if the scalar value exp is an isotropic function of M then the "Symmetric"->True option also leads to proper deriva-
tive as follows

1 1 dexp dexp
E ovn Ovia
dexpr SMSD[exp(M,M,"Symmetric"->True] = | 1 ; x| Oexp Oexp
2 Ovi, Ovy,
Example:
. alb . .
Lets have matrix M = 5 and functions fis, = det(M) and feeneral = M1 1 245M, 2 —sin(M, ;) —3 M;,, thus
c
: a |-b) 2a 5
% — and 6fgcncml — .
oM -b| c oM —cos(b) | -3

<< AceGen" ;

SMSInitialize["test"];
SMSModule["test", Real[a$$, bSS, cS11;
{a, b, c} r SMSReal[{a$$, bS$S, c$$}1];

Me {{a, b}, {b, c}};
fiso = Det[M];
fgeneral = M[[1, 1]]"2+5M[[1, 2]] -Sin[M[[2, 1]]] -3 M[[2, 2]];

The result of differentiation is incorrect under the assumption that x is a symmetric matrix of independent variables.

SMSD[fiso, M] // MatrixForm

Some of the independent variables appear several times in

a list of independet variables: {{gﬂ,_bﬂn {iﬂ,_d}}

. The multiplicity of variables will be ignored.
See Symmetric->True option. See also: SMSD

d -zbl
bl g

60 AceGen code generator

With the "Symmetric"—True we obtain correct result for isotropic argument.

SMSD[fiso, M, "Symmetric" -» True] // MatrixForm

d -bl
bl 3

The argument can be also an arbitrary structure composed of isotropic functions.

SMSD[{fiso, Sin[fiso]}, M, "Symmetric" -» True] // MatrixForm

d bl
bl a
cos| bl - al] d | [-cos|bl-al | bl

~cos| bl - al cl] bl| | cos[bl - al dl] al

With the "Symmetric"—True option wrong result is obtained for a general argument.

SMSD[fgeneral, M, "Symmetric" -» True] // MatrixForm

2d ;[scOs[ﬂH
1 [scOs{ﬂ” -3

SMSFreeze creates unique variables for all component of matrix. Note, that the result is less optimized that the one with
"Symmetric"—True option, however it creates correct results regardless on the type of the argument.

Mk SMSFreeze[M];
fiso = Det[M];
fgeneral = M[[1, 1]]"2+5M[[1, 2]] -Sin[M[[2, 1]]] -3 M[[2, 2]];

SMSD[fiso, M] // MatrixForm

Mss| Mo
‘—|M1" M- -

SMSD [fgeneral, M] // MatrixForm

2M11 5
—Cos[M'ﬂ } -3

Example 4: Differentiation with respect to sparse matrix

By default all differentiation variables have to be defined as auxiliary variables with unique random value. With the
option "Ignore"->NumberQ the numbers are ignored and derivatives with respect to numbers are assumed to be 0.

AceGen code generator 61

dexp dexp

Vii Vi2 ovyy ovy,
SMSDJexp,| vo,1 0 .. |, Ignore”->NumberQ] = | 9exp
Oviy

<< AceGen" ;

SMSInitialize["test"];
SMSModule["test", Real[a$$, bSSS, cS$11;
{a, b, c} r SMSReal[{a$$, bS$S, c$$}1];

xk {a, b, c};
f=a+2b+3c;

SMSD[f, {a, b, 5}, "Ignore" -> NumberQ]

{1, 2, 0}

Without the "Ignore"->NumberQ option the AceGen reports an error.

SMSD[f, {a, b, 5}]

Syntax error in differentiation.
Independent variables
have to be true variables.

Module: test Description: d m 0
Events: 0
Version: 3.305 Windows (6 Jul 12) (MMA 8.)
See also: SMSD AceGen Troubleshooting

SMC::Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSD .

SAborted

Example 5: Differentiation with respect to intermediate variables

Generation of the C subroutine which evaluates derivative of function sin(w) with respect to w where w is intermediate
auxiliary variable defined as w = x> + 1.

w=x2+1
dsin(w)
ow
e The intermediate auxiliary variable is not truly independent variable and as such does not
possess unique signature. Differentiation is in this case not possible.

62 AceGen code generator

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$]];

X + SMSReal [xS];

WEx?+ 1;

SMSD[Sin[w], w]

Differentiation variables do not have
unique signature. They should be

introduced by SMSReal, SMSInteger,
SMSFreeze or SMSFictive statement.

Module: test Description: {M, $vi[2, 1]}
Events: 0

Version: 3.305 Windows (6 Jul 12) (MMA 8.)
See also: SMSD AceGen Troubleshooting

SMC::Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSD-1 .

$Aborted
e SMSFreeze creates unique signature for the intermediate auxiliary variable.

<< AceGen";
SMSInitialize["test"];
SMSModule["test", Real[x$$]];
X + SMSReal [x$$];

Wk SMSFreeze[x2 + 1] ;

SMSD [Sin[w], w]

cos [W]

Limitations: Incorrect structure of the program

Differentiation cannot start inside the "If" construct if the variables involved have multiple instances defined on a
separate branches of the same "If" construct. The limitation is due to the interaction of the simultaneous simplification
procedure and the automatic differentiation procedure.

SMSIf[x > 0];
fa1Sin[x];

SMSElse[];
f-|x2;
fx e SMSD[f, x];

SMSEndIf[f];

The first instance of variable f can not be evaluated at the same time as the second instance of variable f. Thus, only the
derivative code of the second expression have to be constructed. However, if the construct appears inside the loop, then
some indirect dependencies can appear and both branches have to be considered for differentiation. The problem is that
AceGen can not detect this possibility at the point of construction of the derivative code. There are several possibilities
how to resolve this problem.

AceGen code generator 63

With the introduction of an additional auxiliary variable we force the construction of the derivative code only for the
second instance of f.

SMSIf[x > 0];
fa1Sin[x];
SMSElse[];

tmp E x2;

fx £ SMSD[tmp, x];
f 4 tmp;

SMSEndIf[];
If the differentiation is placed outside the "If" construct, both instances of f are considered for the differentiation.

SMSIf[x > 0];
fa1Sin[x];
SMSElse[];
f4 xz;
SMSEndIf[];
fx ek SMSD[f, x];

If f does not appear outside the "If" construct, then f should be defined as a single-valued variable (fk...) and not as
multi-valued variable (f=...). In this case, there are no dependencies between the first and the second appearance of f.
However in this case f can not be used outside the "If" construct. First definition of f is overwritten by the second
definition of f.

SMSIf[x > 0];

fESin[x];
SMSElse[];

fe xz;

fx e SMSD[f, x];
SMSEndIf[];

Exceptions in Differentiation

There are several situations when the formulae and the program structure alone are not sufficient to make proper
derivative code. The basic situations that have to be considered are:

e Type A
Basic case: The total derivatives of intermediate variables b(a) with respect to
independent variables a are set to be equal to matrix M.
e Type A
Basic case: The total derivatives of intermediate variables b(a) with respect to
independent variables a are set to be equal to matrix M.
e Type B
Special case of A: There exists explicit dependency between variables that has to be
neglected for the differentiation.
e Type C
Special case of A: There exists implicit dependency between variables (the dependency
does not follows from the algorithm itself) that has to be considered for the differentiation.
e Type D
Generalization of A: The total derivatives of intermediate variables b(c) with respect to
intermediate variables c¢(a) are set to be equal to matrix M.

64 AceGen code generator

Type Local AD exception Schematic AceGen input

A Q]
N S 55 (ab@) ’ a+SMSReal [a$$]
J- ba D_ZfM b+SMSFreeze[G[a]]

VEAESMSD [f [a,b],a, "Dependency"-{b,a,M}]

arSMSReal [aS$]
e brSMSFreeze[G[a]]
VEiBeSMSD [f [a,b],a, "Constant"-b]

B VfB = df(a:bia))

C Vfo = ’)Zf(ftb) ’ arSMSReal [a$5]
o a [Dby brSMSReal [bS$$]
VECESMSD [f [a,b],a, "Dependency"-{b,a,M}]

arSMSReal [aS$]

D va - 1§f(a.l‘>(c(a))) ’ Cc+SMSFreeze [H [a] :
‘ oa Db _ brSMSFreeze[G[c]]

vEDeSMSD [f [a,b],a, "Dependency"-{b,c,M}]

Type Global AD exception Schematic AceGen input

b = G(a)|pb7M(

arSMSReal [a$$]

A s oy
Vfa = Sflab@) brSMSFreeze [G [a], "Dependency"—{a, M}]
R da
vVEfAESMSD [f [a,b],a]
b:= G(a)|pp arSMSReal [a$$]
B . Da =0
Vfp = k@) brSMSFreeze [G [a], "Dependency"-{a, 0}]
. oa
vEBESMSD [f [a,b],a]
. b := G|%:M arSMSReal [aSS]
Ve = n‘_r';a.b) br-SMSReal [b$$, "Dependency - {a,M}]
VECeSMSD[f [a,b],a]
¢ = H(a) arSMSReal [a$$]
b b — G(C)|&:M crSMSFreeze[H[a]]
Vf 55 (ab(e(a)) brSMSFreeze [G [c], "Dependency"—{c,M}]
/JD = a vEDeSMSD [f [a,b],a]

It was shown in the section Automatic Differentiation that with a simple chain rule we obtain derivatives with respect
to the arbitrary variables by following the structure of the program (forward or backward). However this is no longer
true when variables depend implicitly on each other. This is the case for nonlinear coordinate mapping, collocation
variables at the collocation points etc. These implicit dependencies cannot be detected without introducing additional
knowledge into the system.

With the SMSFreeze[exp, "Dependency"] the true dependencies of exp with respect to auxiliary variables are neglected
and all partial derivatives are taken to be 0.

With the SMSFreeze[exp, "Dependency" —> {{p] s l;e—f }, {pz, %Z’ }, s {pn, %’ }}] the true dependencies of the exp

are ignored and it is assumed that exp depends on auxiliary variables py, ..., p,. Partial derivatives of exp with respect

dexp dex dex,
P 2L 2L (see also SMSFreeze).
dpy ’ Opy Opy

to auxiliary variables py, ..., p, are then taken to be

AceGen code generator 65

m Example Type C: Implicit dependencies

The generation of the subroutine that calculates displacement gradient Dg defined by

E={En 0 reference coordinates
X&) =N &) Xk actual coordinates
ué) =N u displacements

_au
aX

displacement gradient

where Ny =1/8 (1 + £ &) (1 + nmi) (1 + £ &x) is the shape function for k-th node where {&;, nx, {x} are the coordinates
of the k-th node.

Reference frame Actual frame

S (-1-1.1)

3011 kx

<< AceGen~;

SMSInitialize["test", "Language" -> "Fortran"];

SMSModule["Test", Real [X$$[8, 3], u$$[8, 3], ksi$$, etas$$, cetass]];

=={&, n, £} r Table[SMSReal[es$$["IntPoints", i, Ig]]l, {i, 3}];

XI+ Table[SMSReal[nd$$[i, "X", 311, {i, 8}, {j, 3}1;

&n = {{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},
(-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}};

NIk Table[1/8 (1+&En[i, 1]) (1+nEn[i, 2]) (1+&=n[i, 31), {i, 1, 8}1;

e Coordinates X ={X,, Y,, Z,} are the basic independent variables. To prevent wrong
simplifications, we have to define unique signatures for the definition of X.

X r SMSFreeze[NI.XI];
e Here the Jacobian matrix of nonlinear coordinate transformation is calculated.

Jg £ SMSD [X, E]

HM, M, M}, {M, M, |Cl72|}, { |Cl:1|, |C|27|, |C|2=a|}}

e Interpolation of displacements.

ul - SMSReal [Table[nd$$[i, "at", §1, {i, 8}, {i, 3}11;
uENI.ul;

e Simple use of SMSD leads to wrong results.
SMSD[u, X]

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

66 AceGen code generator

e The implicit dependency of E on X is now taken into account when the derivation of u is
made with respect to X.
e [ocal definition of type C AD exception.

arSMSReal [a$$]
br3SMSReal [b5$]

viCeSMSD[f[a,b],a, "Dependency"—{b,a,M

5f(a,b) |
ba | Db

Da

C Vo= N

SMSD[u, X, "Dependency" -» {E, X, Simplify[SMSInverse[Jg]]}]

{{Lh-y,l, U1-yﬁ|, U1-yﬁ|}, {lb-y,l, U)-yﬁl, U7-yﬁ|}, {Uz-x,l, Uq-yﬁl, Uz-ynl}}

m Example Type D: Alternative definition of partial derivatives

Sin(2 o?
The generation of the FORTRAN subroutine calculates the derivative of function f = (Ta)

respect to x. Due to the numerical problems arising when @ — 0 we have to consider exceptions in the evaluation of the
function as well as in the evaluation of its derivatives as follows:

where @ = Cos(x) with

sin(2.0?) w20 i (sm(zaz)) @%0

f ::{ ¢ LA { .
Limw a/=0’ o Limi(w) a=0
a-0 @ a0 O @

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["Test", Real [x$$, £$$, dfdx$$]1];
X + SMSReal [x$$];
a + SMSFreeze[Cos[x]];
£ £ SMSIf[SMSAbs [a] > 107*°
, Sin[2 az] /a
, SMSFreeze[Limit[Sin[Z az] [, o 0] ,
"Dependency" -> {{a, Limit[D[Sin[Z az] /a, a] // Evaluate, a > 0] }}]
E
dfdx e SMSD[f, x];
SMSExport [dfdx, dfdx$$];
SMSWrite[];

File: test.f Size: 993
Methods No.Formulae No.Leafs
Test 6 51

AceGen code generator

67

FilePrint["test.f"]

lhdkhhdhhhdhdhhhdhhdhhhhdhhdhhhdhhdhhhdhhdhhdhdhrhdhhhdhrhdhrhddrhdhrrddx

!* AceGen 3.102 Windows (11 Jun 11) *
1* Co. J. Korelc 2007 17 Jul 11 13:16:56%*
!**
! User : USER

! Evaluation time

! Number of formulae

0 s Mode : Optimal
6 Method: Automatic

e es es e

! Subroutine Test size :51
! Total size of Mathematica code 51 subexpressions
! Total size of Fortran code : 424 bytes

I kkkkkkkkkkkhk*xk*x%*%% S U B R O U T I NE **kkkkhhhrhhhhhhhhhrh®

SUBROUTINE Test(v,x,f,dfdx)
IMPLICIT NONE

include 'sms.h'

LOGICAL b3

DOUBLE PRECISION v(5001),x,f,dfdx
v(5)=-dsin(x)

v(2)=dcos(x)
IF(dabs(v(2)).gt.0.1d-9) THEN
v(6)=2d0*(v(2)*v(2))
v(8)=v(5)*(4d0*dcos(v(6))-dsin(v(6))/v(2)**2)
ELSE

v(8)=2d0*v(5)

ENDIF

dfdx=v(8)

END

Characteristic Formulae

If the result would lead to large number of formulae, we can produce a characteristic formula. Characteristic formula is
one general formula, that can be used for the evaluation of all other formulae. Characteristic formula can be produced

by the use of AceGen functions that can work with the arrays and indices on a specific element of the array.

If Ngoy unknown parameters are used in our numerical procedure, then an explicit form of the gradient and the

Hessian will have at least Ng, f + (Nd,o, f)2 terms. Thus, explicit code for all terms can be generated only if the number

of unknowns is small. If the number of parameters of the problem is large, then characteristic expressions for arbitrary
term of gradient or Hessian have to be derived. The first step is to present a set of parameters as a union of disjoint
subsets. The subset of unknown parameters, denoted by a; , is defined by

a;ca

L
Ui:l a=a
aaj=¢ ji#.

Let f (a) be an arbitrary function, L the number of subsets of a, and % the gradient of f with respect to a.

da

o {ﬂ ar ﬂ}
oa,’ da,’ " Oay

Let @; be an arbitrary element of the i-th subset. At the evaluation time of the program, the actual index of an arbitrary
element a; becomes known. Thus, a;; represents an element of the i-th subset with the index j. Then we can calculate a

characteristic formula for the gradient of f with respect to an arbitrary element of subset i as follows

of
Ba_ij

= SMSDI/, i, j1.

68 AceGen code generator

Let ay represents an element of the k-th subset with the index /. Characteristic formula for the Hessian of f with respect
to arbitrary element of subset k is then

*f of
— - SMSD[— . a, z]
(9611 6Ek| 6Eij

m Example 1: characteristic formulae - one subset

Let us again consider the example presented at the beginning of the tutorial. A function which calculates gradient of
function f = u?, with respect to unknown parameters u; is required.

u:ZSZIN,-u,-
Ni=7,Ny=1-5,Ny=7(1-7)

The code presented here is generated without the generation of characteristic formulae. This time all unknown parame-
ters are grouped together in one vector. AceGen can then generate a characteristic formula for the arbitrary element of
the gradient.

<< AceGen" ;
SMSInitialize["test", "Language" -> "Fortran"]
SMSModule["Test", Real[u$$[3], x$$, LSS, g$$[3111;
{x, L} + {SMSReal [x$$], SMSReal[L$$]};
ui + SMSReal [Table[u$$[i], {i, 3}1];
x X X x
Nil:{—, 1-—, — (l——]};
L L L
ukNi.uij;
fe u2;
SMSDo[i, 1, 3];

Here the derivative of f with respect to i-th element of the set of unknown parameters ui is calculated.

fui e SMSD[f, ui, i];

SMSExport[fui, g$$[i]];
SMSEndDo[];
SMSWrite[];

Method : TeSt 6 formulae, 95 sub-expressions

[1] File created : teSt ° f Size : 1011

AceGen code generator

69

FilePrint["test.f"]

lhdkhhdhhhdhdhhhdhhdhhhhdhhdhhhdhhdhhhdhhdhhdhdhrhdhhhdhrhdhrhddrhdhrrddx

!* AceGen 2.103 Windows (17 Jul 08)

*

1* Co. J. Korelc 2007 18 Jul 08 00:58:38%*
!**

! User : USER

! Evaluation time

! Number of formulae

! Subroutine

! Total size of Mathematica code
! Total size of Fortran code

Test size :95
95 subexpressions
441 bytes

s ee e s e

ls Mode : Optimal
6 Method: Automatic

I kkkkkkkkkkkhk*xk*x%*%% S U B R O U T I NE **kkkkhhhrhhhhhhhhhrh®

SUBROUTINE Test(v,u,x,L,q)
IMPLICIT NONE

include 'sms.h'

INTEGER ill

DOUBLE PRECISION v(5011),u(3),x,L,g(3)
v(6)=x/L

v(7)=1d0-v(6)

v(8)=v(6)*v(7)
v(9)=u(l)*v(6)+u(2)*v(7)+u(3)*v(8)
v(5007)=v(6)*v(9)

v(5008)=v(7)*v(9)

v(5009)=v(8)*v(9)

Do ill=1,3
g(ill)=2d0*v(5006+ill)
ENDDO

END

m Example 2: characteristic formulae - two subsets

da; Oa;

. . . . d . .
Write function which calculates gradient 0—; and the Hessian of the function,

- 22
f=fur,vi u, va,uz, vs, ug, va) =u”+v- +uv,
with respect to unknown parameters u; and v;, where

u:Z?le,-u,-

u:Z‘le,-vi

and
N={(1-X)1-Y),0+X)1-Y),0+X)(1+Y),0-X)(1+)}

We make two subsets u; and v; of the set of independent variables a;.
ai={uy , v Uz, Vo, U3, V3, Us, V4}

wp={uy, up, usz, ua}, vi={vi, vavs, v4}

AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "C"]
SMSModule["Test", Real[ul$$[4], v1S$[4], X$$, ¥Y$SS, g$$[8], HSS[8, 8111
{X, Y} + {SMSReal [X$$], SMSReal [¥$$]};
ui - SMSReal [Table[ul$$[i], {i, 4}]1]1;
vi r SMSReal [Table[v1$$[i], {i, 4}11;
Nie{(1-X)(1-Y), (1+X) (1-¥), (1+X) (L+Y¥), (1-X) (1+Y)};
ueNi.ui; veNi.vi;
f|=u2+v2+uv;

SMSDo [

{g1i, g2i} ¢ {SMSD[f, ui, i], SMSD[f, vi, i]};

SMSExport[{gli, g2i}, {g$$[2i-1], g$$[2i]}];
SMSDo [

He {{SMSD[gli, ui, j], SMSD[gli, vi, j]},
{sMsD[g2i, ui, j], SMSD[g2i, vi, j]}};
SMSExport[H, {{H$$[2i-1,2j-1], HS[2i-1, 23]},
{H$$[2i, 2j-1], HSS[21i, 23]1}}]s
14 {j’ 1’ 4}
17
, {1, 1, 4}
1:
SMSWrite[];
FilePrint["test.c"]

File: test.c Size: 1508

Methods No.Formulae No.Leafs
Test 19 258

AceGen code generator 71

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:29:27%*

EEEEE RS R SRS S E SRS SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS

User : USER

Evaluation time : 1s Mode : Optimal
Number of formulae : 19 Method: Automatic
Subroutine : Test size :258

Total size of Mathematica code
Total size of C code
#include "sms.h"

258 subexpressions
913 bytes*/

[RrkKkkkkkkkkkkkkkk**k S U B R O UT I N E **kkkhkhhhhhhkhhhhhdhk/

void Test(double v[5025],double ul[4],double v1[4],double (*X),double (*Y)
,double g[8],double H[8][8])
{
int i22,i31;
v[16]=1e0-(*X);
v[14]=1e0+(*X);
v[17]1=1e0+(*Y);
v[12]=1e0-(*Y);
v[11l]=v[12]*v[16];
v[13]=v[12]*v[1l4];
v[15]=v[14]1*Vv[17];
v[18]1=v[1l6]*v[17];
v[5012]=v[1l1l];
v[5013]=v[13];
v[5014]1=v[15];
v[5015]=v[18];
v[19]=ul[0]*v[11l]+ul[1l]*v[13]+ul[2]*v[15]+ul[3]*v[18];
v[20]=v[11l]*v1[0]+v[13]*v1i[1l]+v[15]*vi[2]+v[18]*Vv1[3];
v[26]=v[19]+2e0*v[20];
v[24]1=2e0*v[19]+v[20];
for(i22=1;i22<=4;1i22++){
v[28]=v[5011+i22];
g[(-2+2*122)]=v[24]1*v[28];
g[(-1+2*122)]=v[26]*v[28];
for(i31=1;i31<=4;i31++){
v[38]=v[5011+i31];
v[37]1=2e0*v[28]*v[38];
v[39]=v[37]/2e0;
H[(-2+2*%122)][(-2+2*131)]1=v[37];
H[(-2+2%122)][(-1+2*1i31)]=v[39];
H[(-1+2%122)][(-2+2*1i31)]=v[39];
H[(-1+2%i22)][(-1+2*i31)]=v[37];
};/* end for */
};/* end for */
}i

Non-local Operations

Many high level operations in computer algebra can only be implemented when the whole expression to which they are
applied is given in an explicit form. Integration and factorization are examples for such 'non-local operations'. On the
other hand, some operations such as differentiation can be performed 'locally' without considering the entire expression.
In general, we can divide algebraic computations into two groups:

Non-local operations have the following characteristics:
> symbolic integration, factorization, nonlinear equations,

= the entire expression has to be considered to get a solution,

72 AceGen code generator

= all the relevant variables have to be explicitly “visible”.

Local operations have the following characteristics:

= differentiation, evaluation, linear system of equations,
> operation can be performed on parts of the expression,
= relevant variables can be part of already optimized code.

Symbolic integration is rarely used in numerical analysis. It is possible only in limited cases. Additionally, the integra-
tion is an operation of mon-local' type. Nevertheless we can still use all the built-in capabilities of Mathematica and
then optimize the results.

For 'non-local' operations, such as integration, the AceGen system provides a set of functions which perform optimiza-
tion in a 'smart' way. 'Smart' optimization means that only those parts of the expression that are not important for the
implementation of the 'non-local' operation are replaced by new auxiliary variables. Let us consider expression f which
depends on variables x, y, and z.

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["Test", Real [x$$, vS, 2zS11;

{x, vy, 2} + {SMSReal[x$$], SMSReal[y$$], SMSReal[z$$]};

f=x2+2xy+y2+2xy+ 2yz+z2

XPoaxivl v 2vzZ 2P

Since integration of f with respect to x is to be performed, we perform 'smart' optimization of f by keeping the integra-
tion variable x unchanged which leads to the optimized expression fx. Additionally Normal converts expr to a normal
expression, from a variety of AceGen special forms.

fx = SMSSmartReduce[f, x, Collect[#, x] &] // Normal

The following vector of auxiliary variables is created.

SMSShowVector|[]
$S[Method, Null, 1]
V([il,1] = x = xS$
V(2,1] =y = y$$
VI[(3,1] = z = z$$
V[4,1] =81 = <2y>2+2 2y) (32) + (52)°
V[5,1] = §2 = 4 (Ly)
$S[End, Null, {}]

fint = jfx dx

After the integration, the resulting expression fint is used to obtain another expression fr. fr is identical to fint, however
with an exposed variable y. New format is obtained by 'smart' restoring the expression fint with respect to variable y.

AceGen code generator 73

fr = SMSSmartRestore[fint, y, Collect[#, y] &] // Normal

x| v 83l vl 84l

At the end of the Mathematica session, the global vector of formulae contains the following auxiliary variables:

SMSShowVector[];

$S [Method, Null, 1]
VI1l,1] = X = x$§
V([i2,1] =y = y$$
VI[(3,1] = z = zS$$
V[6,1] = ¢¥ = (52)°2
V4,11 =81 = ()2 +2 (by) (32) +6¥
V[5,1] = §2 = 4 (,y)
1
V[7,1] = §3 = 3 (1%) 3+ (1%) (%)
V[8,1] =84 =2 (1x)2+2 (1x) (32)

$S[End, Null, {}]

See also: SMSSmartRestore SMSSmartReduce

Arrays

AceGen has no prearranged matrix, vector, or tensor operations. One can use all Mathematica built-in functions or any
of the external Mathematica packages to perform those operations. Mathematica only supports integer indices (e.g. in
expression M[index] index has to have integer value assigned at the time of evaluation) and the array M has to have
explicit value assigned before the evaluation (e.g. M={1,2,34}). If either M has no value assigned yet or the index is
not an integer number the matrix operations cannot be performed in Mathematica directly. The result of matrix opera-
tion in Mathematica is always a closed form solution for each component of the array. After the matrix operation is
performed, one can optimize the result by using AceGen optimization capabilities. For each component of the array a
new auxiliary variable is created (if necessary) that stores a closed form solution of the specific component (see e.g.
Introduction). For example:

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$[5]], Integer[i$$]];
X + SMSReal [x$$];

ir SMSInteger[i$$];

Here a standard Mathematica vector is defined and a vector of new auxiliary variables is created to store the result.

X r Table[SMSReal [x$$[1i]], {i, 5}]

(xal, Xal, Xl Xal, Xdl

Here the third component of the vector X is displayed.

X[3]

Xal

74 AceGen code generator

The use of AceGen arrays is in this case unnecessary.

SMSPart[X, 3]

Array index is integer number. Consider
using the standard Mathematica arrays instead
of AceGen array objects. See also: Arrays

Xal

Note that an arbitrary symbol cannot be used as an index.
X[i]

Part::pspec:
Part specification $V[2, 1] is neither an integer nor a list of integers. >

Part::pspec:
Part specification $V[2, 1] is neither an integer nor a list of integers. >

Part::pspec: Part specification ﬂ is neither an integer nor a list of integers. >

General::stop:
Further output of Part::pspec will be suppressed during this calculation. >

(Xal, 61, Xal, Xal, Xdlj i

The Mathematica arrays can be fully optimized and they result in a numerically efficient code. However, if the arrays
are large then the resulting code might become to large to be compiled. In this case one can use AceGen defined arrays.
With the AceGen arrays one can express an array of expressions with a single auxiliary variable and to make a refer-
ence to an arbitrary or representative element of the array of expressions (see also Characteristic Formulae). Using the
representative elements of the arrays instead of a full arrays will result in a much smaller code, however the optimiza-
tion of the code is prevented. Thus, one should use AceGen arrays only if they are absolutely necessary. Only one
dimensional arrays (vectors) are currently supported in AceGen and only a following small set of operations is provided:

e SMSAurray - create a new AceGen vector
* SMSPart - take an arbitrary element of the vector

e SMSReplacePart - replace an arbitrary element of the vector. (WARNING: Currently, differentiation can not be
performed with respect to the arrays with the elements that have been changed with the SMSReplacePart !! The
SMSReplacePart command should be used only if it is absolutely necessary.)

SMSDot - dot product of two vectors

SMSSum - sum of all elements of the vector

AceGen supports two types of arrays:

* Constant arrays: a constant array is an array of arbitrary expressions (e.g. XkSMSArray[{1,2,3400+x}]). All
elements of the array are set to have given values.

* General arrays: The elements of the general array have no default values. Only a necessary memory space is
allocated on the global vector of formulas at the time of introductions of a general array (e.g. V 4 SMSArray[10]
allocates memory for the real array with length 10). General arrays HAVE TO BE introduced as a new multi-
valued auxiliary variables.

AceGen code generator 75

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$[5]], Integer[i$$]];
X - SMSReal [x$$]; i+ SMSInteger[i$$];

Here a constant AceGen array is created. Result is a single auxiliary variable.

X r SMSArray [Table[SMSReal [x$$[k]], {k, 5}]1]
X

In this case, the third component of Sin[X] cannot be accessed by Mathematica since X is a symbol not an array.
X[31
Part::partw: Part 3 of $V[3, 1] does not exist. >

Part::partw: Part 3 of $V[3, 1] does not exist. >

Part::partw: Part 3 of E does not exist. >

E[ﬂ]

However, one can access the i-th component of X. During the AceGen sessions the actual value of the index i is not known, only
later, at the evaluation time of the program, the value of the index i becomes known.

SMSPart[X, i]
X|
il

Arrays are physically stored at the end of the global vector of formulae. The dimension of the global vector (specified
in SMSInitialize) is automatically extended in order to accommodate additional arrays.

m Example : Arrays

The task is to create a function that returns a dot product of the two vectors of expressions and the i-th element of the
second vector.

This initializes the AceGen system and starts the description of the "test" subroutine.

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, r$$, s$$, t$$], Integer[nS, m$$1];
X + SMSReal [x$$];

n+ SMSInteger[n$$]; m+ SMSInteger [m$$];

This creates the AceGen array object with constant contents. If we look at the result of the SMSATrray function we can see that a
single object has been created (G[...]) representing the whole array.

SMSArray[{x, x*2, 0, «}]

G[ﬁ, ﬁz, 0,]

76 AceGen code generator

If an array is required as auxiliary variable then we have to use one of the functions that introduces a new auxiliary variable. Note
that a single auxiliary variable has been created representing arbitrary element of the array. The signature of the array is calculated
as perturbed average signature of all array elements.

A E SMSArray[{x, x~2, 0, n}]

A

This creates the second AceGen array object with constant contents.

Bk SMSArray[{3x, 1+x"2, Sin[x], Cos[x 7] }]

Bl

This calculates a dot product of vectors A and B

dot = SMSDot[A, B]

Al-Bl

This creates an index to the n-th element of the second vector.

Bn = SMSPart[B, n]

8

This allocates space on the global vector of formulae and creates a general AceGen array object V. The values of the vector V are
NOT INITIALIZED.

V 1 SMSArray[10]

1V

This sets the elements of the V array to be equal V; = —:_, i=1,2,..,10.

SMSDo [
V 41 SMSReplacePart([V, 1/1i, i];
, {i, 1, 10, 1, V}];

v

V]

This creates an index to the m-th element of the V array.

Vm = SMSPart [V, m]

M

AceGen code generator

77

SMSExport[{dot, Bn, Vm}, {r$$, s$$, t$$}1;
SMSWrite["test"];

File: test.f Size: 1135
Methods No.Formulae No.Leafs
test 6 96

FilePrint["test.f"]

lhdkkhdhhhdhhhhdhhhdhhhhdhhdhhhdhhddhhhhhhdhhhdhhdhrddhrhdhrrddrhddrrddr

!* AceGen 2.502 Windows (18 Nov 10)

1%

Co. J. Korelc 2007

*

24 Nov 10 13:08:14%*

lhdkdhkdhkhhhhkdhkhhhhhdhhdhhdhhhhhdhhdhhhhhhdhdhhhhkdhdhdhhhhdrdrhrhrx

User
Eval
Numb
Subr
Tota
Tota

USER
uation time 0 s
er of formulae 6

outine
1l size of Mathematica code
1 size of Fortran code

e es es ee ee

Mode : Optimal
Method: Automatic

test size :96
96 subexpressions
560 bytes

lhkdhkdhkdhkkhhkhkhkdxdkxd k*x* § U B R O UT I N E ** kkdhkdhhhhhhhdhhdhhhhdrx

SUBROUTINE test(v,x,r,s,t,n,m)
IMPLICIT NONE

include 'sms.h'

INTEGER n,m,i8

DOUBLE PRECISION v(5023),x,r,s,t
V(5)=x**2

v(5000)=x

v(5001)=v(5)

v(5002)=0d0
v(5003)=0.3141592653589793d1
v(5004)=3d0*x
v(5005)=1d0+v(5)
v(5006)=dsin(x)
v(5007)=dcos(0.3141592653589793d1*x)
DO i8=1,10

v(5007+18)=1d0/1i8

ENDDO

r=SMSDot (v(5000),v(5004),4)
s=v(5003+int(n))
t=v(5007+int(m))

END

Run Time Debugging

The code profile window is also used for the run-time debugging. The break points can be inserted into the source code
by the SMSSetBreak command.

SMSSetBreak[breakID] insert break point call into the source

code with the string breakID as the break identification

78 AceGen code generator

option name default value
"Active" True break point is by default active
"Optimal" False by default the break point is included into

source code only in "Debug" mode. With the option
"Optimal" the break point is always generated.

ptions for SMSSetBreak.

Break points are inserted only if the code is generated with the "Mode"—"Debug" option. In "Debug" mode the system
also automatically generates file with the name "sessionname.dbg" where all the information necessary for the run-time
debugging is stored. The number of break points is not limited. All the user defined break points are by default active.
With the option "Active"—False the break point becomes initially inactive. The break points are also automatically
generated at the end of If.. else..endif and Do...enddo statements additionally to the user defined break points. All
automatically defined break points are by default inactive. Using the break points is also one of the ways how the
automatically generated code can be debugged.

The data has to be restored from the "sessionname.dbg" file by the SMSLoadSession command before the generated
functions are executed.

SMSLoadSession[name] reload the data and definitions associated with the AceGen
session with the session name name and open profile window

With an additional commands SMSClearBreak and SMSActivateBreak the breaks points can be activated and deacti-
vated at the run time.

SMSClearBreak([breakID] disable break point with the break identification breakID
SMSClearBreak[" Default "] set all options to default values
SMSClearBreak[] disable all break points

SMSActivateBreak[breakID_String, opt] activate break point with the
break identification breakID and options opt

SMSActivateBreak[im_Integer, opt] activate the automatically generated break point
at the beginning of the im —th module (subroutine)

SMSActivateBreak([b, func] = SMSActivateBreak[b,"Function"— func,
"Window"—False,"Interactive"—False]
SMSActivateBreak[] = SMSActivateBreak|[1]

option name default value

"Interactive" True initiates dialog (see also Dialog)

"Window" True open new window for debugging

"Function" None execute pure user defined function at the break point

plions for SMSActivateBreak.

The program can be stopped also when there are no user defined break points by activating the automatically generated
break point at the beginning of the chosen module with the SMSActivateBreak[module_index] command.

If the debugging is used in combination with the finite element environment AceFEM, the element for which the break
point is activated has to be specified first (SMTIData["DebugElement" elementnumber]).

AceGen code generator 79

See also: AceGen Palettes , Interactive Debugging, AceFEM Structure, User Interface

Example

Let start with the subprogram that returns solution to the system of the following nonlinear equa-
tions

3:
-0}

where x and y are unknowns and a is the parameter using the standard Newton-Raphson iterative procedure. The
SMSSetBreak function inserts the breaks points with the identifications "X" and "A" into the generated code.

<< AceGen";
SMSInitialize["test", "Language" -> "Mathematica", "Mode" - "Debug"];
SMSModule["test", Real[x$$, y$$, as$$, tol$$], Integer[nmaxss]];
{x0, yO, a, €} r SMSReal [{x$$, y$$, a$$, tolss}];
nmax + SMSInteger [nmax$$];
{x, y} a2 {x0, yO};
sMsDo
3k {a Xy+x,a - xyz};
Kt F SMSD[&, {x, Y}];
{Ax, Ay} E SMSLinearSolve[Kt, -&];
{x, vy} {x, v} + {8x, AY};
SMSSetBreak["A", "Active" - False];
SMSIf[SMSSqrt[{Ax, Ay}.{Ax, Ay}] < €
, SMSExport[{x, v}, {x$$, v$$}1;
SMSBreak|[];
1i
SMSIf[i == nmax
, SMSPrintMessage["no convergion"];
SMSReturn([];
17
SMSSetBreak["X"];
, {1, 1, nmax, 1, {x, v}}
B

SMSWrite[];
time=0 variable= 0 = {}
[0] Consistency check - global
[0] Consistency check - expressions
[0] Generate source code :
Events: 0

[0] Final formating

File: test.m Size: 2491

Methods No.Formulae No.Leafs
test 33 198

80

AceGen code generator

Here the program is loaded and the generated subroutine is called.

<< AceGen" ;
<< "test.m";

SMSLoadSession["test"];
x=1.9;y=-1.2;
test[x, y, 3., 0.0001, 10]

At the break point the structure of the program is displayed together with the links to all generated formulae and the

actual values of the auxiliary variables.

| debugger palette | | debugger display |
Profile controls E| El
Close | Update | test | ||
Wig vl 2 x0=1.9v0=-1.2a=3. e=0.0001
— 1 =1.9344403 =-1.2470187 ©
Cutlining vl :
Do [isl] = 1,[n$$=2],1
Include vI Y
Fun time i=l &, =0.019 4 =0. 264Kt =7. 23Kty =
Refresh Ktz> =4. 56 Ay =-0.04701871 Ax=0. 03444
<ml.9344408 -y ==1.2470187C A O
o Clear all : ||
{ H 4 ey : i
T Ly fAx o« 8y my (=0.04701871)° + ¢
=[x ml.93444908) yéé=[-v =-1.247C
s Conkinue Break|]:
[
Eriall
s
If isl
Print| 'no convergion'
Retun[l[ﬂull,l[odufl] c]
o
EndTE
®xio hd
Endhno .

The program stops and enters interactive debugger whenever selective SMSExecuteBreakPoint function is executed.
The function also initiates special dialog mode supported by the Mathematica (see also Dialog). The "dialog" is

terminated by il button. Break points can be switched on (@) and off (O) by pressing the button at the position of the
break point. The break points are automatically generated at the end of If.. else..endif and Do...enddo structures addition-

aly to the user defined break points. The current break point is displayed with the

Menu legend:

Refresh
_l. = refresh the contents of the debug window

LS

AceGen code generator 81

O = disable all breaks points

® = enable break point at the beginning of the subroutine

1
,ﬂ = continue to the next break point

Here the break point "X" is inactivated and the break point "A" is activated. The break point "A" is given a pure function that is
executed whenever the break point is called. Note that the SMSLoadSession also restores all definitions of the symbols that have
been assigned value during the AceGen session (e.g. the definition of the K7 variable in the current example).

<< AceGen";

<< "test.m";

SMSLoadSession["test"];

SMSClearBreak["X"];

SMSActivateBreak["A", Print["K=", Kt // MatrixForm] &];
x=1.9;y=-1.2;

test[x, y, 3., 0.0001, 10]

K_(7.23 5.7)
"1 -1.44 4.56

7(7.48513 5.80332)
| -1.55506 4.82457

[7.4744 5.79955
"\ -1.55185 4.81646

User Defined Functions

The user can define additional output formats for standard Mathematica functions or new functions. The advantage of
properly defined function is that allows optimization of expressions and automatic differentiation. In general there are
several types of user defined functions supported in AceGen:

1. Intrinsic user function: scalar function of scalar input parameters with closed form definition of the function
and its derivatives that can be expressed with the existing Mathematica functions. The definition of the
intrinsic user function becomes an integral part of Mathematica and AceGen. Thus, a full optimization of the
derived expressions and unlimited number of derivatives.

2. User AceGen module: arbitrary subroutine with several input/output parameters of various types generated
with AceGen within the same AceGen session as the main module. All AceGen modules generated within the
same AceGen session are automatically written into the same source file and the proper definitions and
declarations of input/output parameters are also included automatically. The user AceGen module can be
called from the main module using the SMSCall command. Optimization of expressions is performed only
within the module. Differentiation is not supported unless derivatives are also derived and exported to main
module.

3. User external subroutines: external subroutines are arbitrary subroutines with several input/output parame-
ters of various types written in source code language and provided by the user. The user external subroutines
can be called from the main module using the SMSCall command in a same way as User AceGen module.
The "System" — False option has to be included in order to signify that the subroutine has not been generated
by AceGen. For the generation of the final executable we have two options:

a. The source code file can be incorporated into the generated source code file using the "Splice" option of
the SMSWrite command. The original source code file of the user subroutine is not needed for the
compilation.

82 AceGen code generator

b. Alternatively one can include only the header file containing the declaration of the function accordingly
to the chosen source code language using the "IncludeHeaders" option of the SMSWrite command. The
original source code of the external subroutine has to be compiled separately and linked together with
the AceGen generated file.

See also: Elements that Call User External Subroutines.

m Intrinsic user function 1: Scalar function exists but has different
syntax in source code language

<< AceGen" ;
SMSInitialize["test", "Language" -» "Fortran"];

This is an additional definition of output format for function tangent.

SMSAddFormat [
Tan[i_] :» Switch[SMSLanguage,
"Mathematica", "Tan"[i], "Fortran", "dtan"[i], "C", "tan"[i]]

1;

SMSModule["subl", Real[x$$, y$$[5111;
X + SMSReal [x$$];

SMSExport[Tan[x], y$$[1]];
SMSWrite[];

File: test.f Size: 761
Methods No.Formulae No.Leafs
subl 1 7

The final code can also be formatted by the "Substitutions" option of the SMSWrite command.

FilePrint["test.f"]

ldhdkhhdhhhdhhhhdhhhdhhhhdhhhdhhhdhhdhhhdhhdhhhdrhdhhhdhrhdrrddrhdhrrddx

!* AceGen 2.502 Windows (5 Nov 10) *

1% Co. J. Korelc 2007 5 Nov 10 10:53:53 *

!**

! User : USER
Evaluation time

! Number of formulae

! 0 s Mode : Optimal
!

! Subroutine

|

!

1 Method: Automatic
subl size :7

7 subexpressions

203 bytes

Total size of Mathematica code
Total size of Fortran code

s ee e s e

!******************* S UBR O UTINE ***%k%kkkkkkkhkkkkkkkkxx
SUBROUTINE subl(v,x,y)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(5001),x,y(5)
y(1l)=dtan(x)
END

IMPORTANT: Differentiation is not supported for the User AceGen module and User external subroutines unless
derivatives are derived within the user subroutine explicitly and exported into the main module through the output
parameters of the module (see example below). Consequently, if the first derivatives are not derived and exported to the
main module, then the first derivatives (and all higher derivatives as well) will be 0. If the first derivatives are defined
and higher derivatives are not then in general the higher derivatives of the general function can be nonzero (see exam-
ple below), however they are incorrect. NO WARNING is given about the possibility of incorrect derivatives.

AceGen code generator

m Intrinsic user function 2: Scalar function with closed form definition
of the function and its derivatives

This adds alternative definition of Power function MyPower[x, y] = x” that assumes that x>0 and

DMWWMWMFY&¥g@a

D[MyPower[x.y],y] = MyPower[x, y] Log[x].

<< AceGen";
SMSInitialize["test", "Language" -» "C"];

This is an additional definition of output format for function MyPower.

SMSAddFormat [MyPower[i , j] =
Switch[SMSLanguage, "Mathematica", i”j, "Fortran", i~ j, "C", "Power"[i, j]]

1;

Here the derivatives of MyPower with respect to all parameters are defined.

Unprotect [Derivative];

Derivative[l, O] [MyPower][i_, j] := jMyPower[i, j] / i;

MyPower[i, j] Log[i];

Derivative[0, 1] [MyPower][i_ , j_] :
Protect [Derivative];

Here is defined the numerical evaluation of MyPower with the p-digit precision.

N[MyPower([i_ , j_1, p_] :=1"3J;

SMSModule["subl", Real [x$$, yv$$, 28811
X + SMSReal [xS];
y + SMSReal [y$$];

SMSExport [SMSD [MyPower [x, yv], x], z$$];

SMSWrite[];

File: test.c Size: 729
Methods No.Formulae No.Leafs
subl 1 22

FilePrint["test.c"]

/***

* AceGen 2.502 Windows (5 Nov 10) *
* Co. J. Korelc 2007 5 Nov 10 11:14:36 *
kkhkhkkhkkhkkhkkkhkhkhkkhhkkhkhhkhkhkhkhhkhkhkhkhhkhkhhkkhkhkhkhhkhkhkhkhhkkhkhkhkkhkhhkkhkkhkhkkhkkkhkkkkxk*x
User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae : 1 Method: Automatic
Subroutine : subl size :22

Total size of Mathematica code : 22 subexpressions

Total size of C code : 167 bytes*/

#include "sms.h"

[*hkkkkkkkkkkxkkxkx* *x G U B R O UT I NE **,*xkkkkhkhkhkhkhxhxdhx/
void subl(double v[5001],double (*x),double (*y),double (*z))

{

(*z)=((*y)*Power ((*x),(*y)))/(*x);

}i

84 AceGen code generator

m User AceGen module 1: Definition of the user subroutine and first
derivatives

<< AceGen";
SMSInitialize["test", "Language" -» "C"];

This generates user AceGen module f = Sin(al X+a, xN2 + a3 x3) with an input parameter x and constants a[3] and the output

. a -
parameters y = f(x) and first dy = Ff derivatives.

SMSModule["f", Real [x$$, a$$[3], vS, dyss]1];
X + SMSReal [x$$];

{al, a2, a3} r SMSReal [Table[a$$[i], {i, 3}]1;
yl:Sin[alx+a2 x2 +a3 x3];

dy £ SMSD [y, x];

SMSExport[y, y$$1;

SMSExport [dy, dy$$];

This generates subroutine main that calls subroutine f.

SMSModule["main", Real [w$$, r$$]1];
w + SMSReal [w$$];

This use of I operator here is obligatory to ensure that auxiliary variables is generated that can be used later for the definition of the
partial derivatives.

zrw"2;

The SMSCall commands inserts into the generated source code the call of external subroutine with the given set of input and output
parameters (see SMSCall).All the arguments are passed to subroutine by reference (pointer). Input arguments are first assigned to
an additional auxiliary variables before they are passed to subroutine. SMSCall returns auxiliary variable fo that represents the call
of external subroutine f .

fo = sMScall["f", z, {1/2,1/3,1/4}, Real[y$$], Real[dy$$]1];

The SMSReal is used here to import the output parameters of the subroutine to AceGen. The option "Subordinate" is necessary to
ensure that the call to fis executed before the output parameters are imported.

dfdz r SMSReal [dy$$, "Subordinate" - fo];

The "Dependency"->{sin,{x,dy}} option defines that output parameter y depends on input parameter x and defines partial deriva-
tive of y with respect to input parameter x. By default all first partial derivatives of output parameters with respect to input parame-
ters are set to 0.

f r SMSReal[y$$, "Subordinate" -» fo, "Dependency" -> {z, dfdz}];

First derivatives are derived and displayed here.

dw e SMSD[f, w];
SMSRestore[dw, "Global"]

2 dfdz| wl

AceGen code generator

85

Second derivatives are derived and displayed here. It is obvious that the second derivatives are incorrect, due to the lack of proper
definition of the second derivative of f with respect to z.

ddw = SMSD [dw, w];

SMSRestore[ddw, "Global"]

2 dfdz|

SMSExport [dw, dy$$];

SMSWrite[];

Size: 1189

File: test.c
Methods No.Formulae
f 4
main 4

No.Leafs
78
42

FilePrint["test.c"]

/***

2.502 Windows (18 Nov 10) *
Co. J. Korelc 2007

EEEEE RS EE SRS

* AceGen
*

User : USER

Evaluation time
Number of formulae

Subroutine
Subroutine

Total size of Mathematica code
Total size of C code
#include "sms.h"

[rrKkkhkhkkkkhkkkkk*k*k S U B R O UT I N E **kkkkkdhhhhhhkhkhhhkdhk/

void f(double v[5001],double (*x),double a[3],double (*y),double (*dy))

{

v[7]=Power((*x),2);
vi6]=a[l]*v[7]+a[0]*(*x)+a[2]*Power((*x),3);
(*y)=sin(v[6]);
(*dy)=(a[0]+3e0*a[2]*v[7]+2e0*a[l]*(*x))*cos(V[6]);

}i

/******************* S UBROUTINE *********************/

24 Nov 10 13:18:30%*

s Mode : Optimal
Method: Automatic

f size :78

main size :42

120 subexpressions

565 bytes*/

0
8

void main(double v[5001],double (*w),double (*r))

{

double dy;double v01l;double y;double v02[3];
v0l=Power((*w),2);
v02[0]=0.5e0;

v02[1]1=0.3333333333333333e0;
v02[2]1=0.25€e0;
f(&v[5009],&v01,v02,4&y,&dy);
(*dy)=2e0*dy* (*w);

}i

86 AceGen code generator

m User AceGen module 2: Definition of the user subroutine and first
and second derivatives

This generates user AceGen module f = Sin(al X+ ayx"2 +a;s x3) with an input parameter x and constants a[3] and the output
. J, & .
parameters y = f(x) and first dy = ;j; and second ddy = a_J; derivatives.
X

<< AceGen";
SMSInitialize["test", "Language" -» "C"];

SMSModule["f", Real[x$$, a$$[3], y$$, dys$s, ddyss]];
X + SMSReal [xS];

{al, a2, a3} r SMSReal [Table[aS[i], {i, 3}]1;
yl:Sin[alx+a2 x? + a3 x3];

dy £ SMSD[y, x];

ddy £ SMSD[y, x];

SMSExport [{y, dy, ddy}, {y$$, dy$$, ddy$$}];

SMSModule["main", Real [w$$, r$$]11];

w k SMSReal [wS];

zrw™2;

fo = sMscall["f", z, {1/2,1/3,1/4}, Real[y$$], Real[dy$$], Real[ddyS]];

dfdz2 - SMSReal [ddy$$, "Subordinate" - fo];

dfdz r SMSReal [dy$$, "Subordinate" -» fo, "Dependency" -> {z, dfdz2}];
f - SMSReal[y$$, "Subordinate" -» fo, "Dependency" -> {z, dfdz}];

dw e SMSD[f, w];

ddw = SMSD [dw, w];

Both first and second derivatives are correct.

SMSRestore[{dw, ddw}, "Global"]

(2 dfdz| wl, » dfdz]. s dfdz2| wl)

SMSExport [{dw, ddw}, {dy$$, ddy$$}];

SMSWrite[];

File: test.c Size: 1317
Methods No.Formulae No.Leafs
f 4 82
main 6 73

AceGen code generator

87

FilePrint["test.c"]

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:16:18*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
User : USER

Evaluation time

Number of formulae

Subroutine

Subroutine

Total size of Mathematica code
Total size of C code

#include "sms.h"

0 s Mode : Optimal
10 Method: Automatic
f size :82

main size :73

155 subexpressions

687 bytes*/

e es es eo es e

[hrkkkkkkkkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkhhkkhkkkk/

void f(double v[5001],double (*x),double a[3],double (*y),double (*dy),double
(*ddy))

{

v[7]=Power((*x),2);

v[6]l=a[l]*v[7]+a[0]*(*x)+a[2]*Power((*x),3);

v[8]=(a[0]+3e0*a[2]*v[7]+2e0*a[l]*(*x))*cos(V[6]);

(*y)=sin(v[6]);

(*dy)=v[8];

(*ddy)=v[8];

}i

[hrkkkkkkkkkkkkkkkxx G U B R O UT I NE **xkkkkkkkkhkhhkkhhkhkk/
void main(double v[5001],double (*w),double (*r))

{

double ddy;double dy;double v01l;double y;double v02[3];
v[20]=2e0*(*w);

v0l=Power((*w),2);

v02[0]1=0.5e0;

v02[1]1=0.3333333333333333€0;

v02[2]=0.25€e0;

f(&v[5009],&v01,v02,&y,&dy,&ddy);

v[18]=dy;

(*dy)=v[18]1*v[20];

(*ddy)=2e0*v[18]+ddy*(v[20]*v[20]);

}i

m User external subroutines 1: Source code file incorporated into the
generated source code

Lets create the C source file "Energy.c" with the following contents

88 AceGen code generator

Export["Energy.c",
"void Energy (double xIlp, double %xI3p, double *Clp, double *C2p,
double *C3p, double *pi, double dp[2], double ddp[2][2])

double I1, I3, Cl, C2, C3;
Il = *Ilp; I3 = *I3p; Cl = %Clp; C2 = *C2p; C3 = *C3p;
*pi = (C2x (-3 + Il))/2.
+ (Clx(-1 + I3 - log (I3)))/4. - (C2xlog (I3))/2.;
dp[0] = C2/2.;
dp[1l] = (Cl%x(1 - 1/I3))/4. - C2/(2.%I3);
ddp[0] [0] = O;

ddp[0] [1] = O;
ddp[1][0] = O;
ddp[1][1] = C1/(4.%I3%I3) + C2/(2.%I3%I3);

1", "Text"]

Energy.c

and the C header file "Energy.h" with the following contents

Export["Energy.h",

void Energy (double *Ilp, double *I3p, double *Clp, double *C2p,
double *C3p, double xpi, double dp[2], double ddp[2][2])", "Text"];

Subroutine Energy calculates the strain energy I1(I1,I3) where 11 and I3 are first and third invariant of the right Cauchy-

Green tensor and first and second derivative of the strain energy with respect to the input parameters I1 and I12.

This generates subroutine Stress with an input parameter right Cauchy-Green tensor C that returns Second Piola-Kirchoff stress
tensor S. Stress tensor corresponds to the arbitrary strain energy function given by source code file Energy.c. The user supplied

source code is incorporated into generated source code.

<< AceGen" ;

SMSInitialize["test", "Language" - "C"];

SMSModule["Stress", Real[CS[3, 3], SS[3, 3], C18$, C2$8S$, C3$$]1;
{c1l, c2, C3} r SMSReal[{C1$$, C2$$, C3$$}1;

C r SMSReal [Table[C$$[i, j1, {i, 3}, {J, 3}11]1;

c[2, 1] = c[1, 2]; c[3, 1] = c[1, 3]; C[3, 2] = C[2, 31;

{11, 13} + {Tr[C], Det[C]};

pcall = sMSCall["Energy", I1, 13, C1, C2, C3,

Real[pi$$], Real[dp$$[2]], Real[ddpSS[2, 2]], "System" » False];
ddp + SMSReal [Table[ddp$$[i, 71, {i, 2}, {j, 2}], "Subordinate" -» pcall];
dp + SMSReal [Table[dpS[i], {i, 2}],

"Subordinate" -» pcall, "Dependency" -» {{Il1, 13}, ddp}];

II - SMSReal [pi$$, "Subordinate" - pcall,

"Dependency” -» {{I1, dp[[1]1}, {I3, dp[[2]1]1}}];
SE2SMSD[II, C];

SMSExport[S, S$$]1;
SMSWrite["Splice" -> {"Energy.c"}];

File: test.c Size: 2051

Methods No.Formulae No.Leafs
Stress 18 353

AceGen code generator

FilePrint["test.c"]

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:26:17*

hhkhkhkhkhkhhhkhhhhhkhhhhhkhkhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhkhkhkhkhkkk*x

User : USER

Evaluation time : 0 s Mode : Optimal
Number of formulae : 18 Method: Automatic
Subroutine : Stress size :353

Total size of Mathematica code : 353 subexpressions

Total size of C code : 985 bytes*/

#include "sms.h"

void Energy (double *Ilp, double *I3p, double *Clp, double *C2p,
double *C3p, double *pi, double dp[2], double ddp[2][2])

{
double I1, I3, C1l, C2, C3;
I1 = *Ilp; I3 = *I3p; Cl = *Clp; C2 = *C2p; C3 = *C3p;
pi = (C2(-3 + Il))/2. + (Cl*(-1 + I3 - log (I3)))/4. - (C2*log (I3))/2.;
dp[0] = C2/2.;
dp[l] = (Cl*(1 - 1/I3))/4. - C2/(2.*I3);
ddp[0][0] = O;
ddp[0][1] = 0;
ddp[11[0] = 0O;
ddp[1][1] = C1/(4.*I3*I3) + C2/(2.*I3*I3);

}

/******************* S UBROUTINE *********************/

void Stress(double v[5001],double C[3][3],double S[3][3],double (*Cl),double
(*C2),double (*C3))
{

double pij;double v01l;double v02;double v03;double v04;double v05;double
ddp[2][2];double dp[2];
v[36]=Power(C[0][1],2);
v[40]=C[0][0]*C[1][1]-v[36];
v[33]=Power (C[0][2],2);
v[30]=2e0*C[0][2]*C[1]1[2];
v[28]=Power(C[1]1[2],2);
vO1=C[O][O0]1+C[1]1[114C[2][2];
v02==(C[0][0]*v[28])+C[0][1]1*V[30]-C[1][1]1*V[33]+C[2][2]*V[40];
v03=(*Cl);
v04=(*C2);
v05=(*C3);
Energy(&v01l,&v02,&v03,&v04,&v05,&pi,dp,ddp);
v[25]=dp[0];
v[26]=dp[1l];
v[39]1=4e0*v[26];
v[31]1=2e0*v[26]*(-2e0*C[0][1]1*C[2][2]+Vv[30]);
v[32]=(-(C[O0][2]*C[1]1[1])+C[O][1]1*C[1][2])*Vv[39];
v[35]=(C[0]1[1]*C[0][2]-C[0][0]*C[1][2])*V[39];
S[0][0]1=2e0*(v[25]+v[26]*(C[1][1]*C[2][2]-v[28]));
S[0][1]=v[31];
S[0][2]=v[32];
S[1][0]=v[31];
S[1]1[1]=2e0*(v[25]+v[26]*(C[0][0]*C[2][2]-Vv[33]))];
S[1]1[2]1=v[35];
S[2][0]1=v[32];
S[2][1]=v[35];
S[2][2]=2e0*(v[25]+Vv[26]*v[40]);
}i

90 AceGen code generator

m User external subroutines 2: Header file incorporated into the
generated source code

Previous example is here modified in a way that only the header file "Energy.h" is incorporated into generated source
code.

<< AceGen";

SMSInitialize["test", "Language" -» "C"];

SMSModule["main", Real[C$$[3, 3], S$$[3, 3], C1$$, C2$$, C3$811;
{C1, c2, C3} r SMSReal [{C1§$, C2§$, C35$$}];

C + SMSReal [Table[CSS[i, 7], {i, 3}, {3, 3}11;

c[2, 1] = ¢[1, 2]; €3, 1] = c[1, 3]; €3, 2] = C[2, 3];

{I1, 13} + {Tr[C], Det[C]};

pcall = sMsCall["Energy", I1, I3, C1, C2, C3,

Real[pi$$], Real[dp$$[2]], Real[ddpsSS[2, 2]], "System" » False];
ddp r SMSReal [Table[ddp$$[i, i1, {i, 2}, {i, 2}1, "Subordinate" - pcall];
dp r SMSReal [Table[dp$$[i], {i, 2}],

"Subordinate" -» pcall, "Dependency" -» {{Il1, 13}, ddp}];

Il -+ SMSReal [pi$$, "Subordinate" - pcall,

"Dependency” -» {{Il1, dp[[1]1}, {I3, dp[[2]]1}}];
SE2SMSD[II, C];

SMSExport[S, S$$]1;
SMSWrite["IncludeHeaders" -> {"Energy.h"}];

File: test.c Size: 1596

Methods No.Formulae No.Leafs
main 18 353

AceGen code generator 91

FilePrint["test.c"]

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:28:00%*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
User : USER

Evaluation time : 1s Mode : Optimal
Number of formulae 18 Method: Automatic

Subroutine : main size :353
Total size of Mathematica code : 353 subexpressions
Total size of C code : 983 bytes*/

#include "Energy.h"
#include "sms.h"

[Kk kkkkkkkkkkkkxkxxx*x G U B R O UT I N E ***kkxkkkkkkkkkkxhhkkk/

void main(double v[5001],double C[3][3],double S[3][3],double (*Cl),double
(*C2) ,double (*C3))

{

double pij;double v01l;double v02;double v03;double v04;double v05;double
ddp[2][2];double dp[2];
v[36]=Power(C[0][1],2);
v[40]=C[0][0]*C[1][1]-v[36];
v[33]=Power(C[0]1[2],2);
v[30]1=2e0*C[0][2]1*C[1][2];
v[28]=Power(C[1]1[2],2);
v01=C[O0][O0]+C[1]1[1]1+C[2][2];
v02=-(C[0][0]*Vv[28])+C[0][1]*Vv[30]-C[1][1]*v[33]+C[2][2]*Vv[40];
v03=(*Cl);
v04=(*C2);
v05=(*C3);
Energy(&v01l,&v02,&v03,&v04,&v05,&pi,dp,ddp);
v[25]=dp[0];
v[26]=dp[1l];
v[39]1=4e0*v[26];
v[31]1=2e0*v[26]*(-2e0*C[0][1]1*C[2][2]+V[30]);
v[32]=(-(C[O0][2]*C[1][1])+C[O][1]*C[1][2])*v[39];
v[35]=(C[0][1]*C[0][2]-C[O0][0]*C[1]1[2])*V[39];
S[0][0]=2e0*(v[25]+Vv[26]*(C[1][1]1*C[2][2]-Vv[28]));
S[O0][1]1=v[31];
S[0][2]=v[32];
S[1][0]=v[31];
S[1][1]=2e0*(v[25]+v[26]*(C[0][0]*C[2][2]-v[33]))]
S[1][2]=v[35];
S[2][0]1=v[32];
S[2][1]1=v[35];
S[2][2]=2e0*(v[25]+Vv[26]*v[40]);
}i

Symbolic Evaluation

Symbolic evaluation means evaluation of expressions with the symbolic or numerical value for a particular parameter.
The evaluation can be efficiently performed with the AceGen function SMSReplaceAll.

SMSReplaceAll[exp, replace any appearance of auxiliary variable v;
v —>new;,v,—>new,, ...] inexpression exp by corresponding expression new;

At the output the SMSReplaceAll function gives €xXp |, =new, v,=new,,...- 1he SMSReplaceAll function searches entire
database for the auxiliary variables that influence evaluation of the given expression exp and at the same time depend

92 AceGen code generator

on any of the auxiliary variables v;. The current program structure is then enhanced by the new auxiliary variables.
Aucxiliary variables involved can have several definitions (multi-valued auxiliary variables).

It is users responsibility that the new expressions are correct and consistent with the existing program structure. Each
time the AceGen commands are used, the system tries to modified the entire subroutine in order to obtain optimal
solution. As the result of this procedures some variables can be redefined or even deleted. Several situations when the
use of SMSReplaceAll can lead to incorrect results are presented on examples.

However even when all seems correctly the SMSReplaceAll can abort execution because it failed to make proper
program structure. Please reconsider to perform replacements by evaluating expressions with the new values directly
when SMSReplaceAll fails.

Example 1: Taylor series expansion

A typical example is a Taylor series expansion,

0F(x)
F(x)=F(x) |X=X0 T Ix:xo (x—x0),
ox

where the derivatives of F have to be evaluated at the specific point with respect to variable x. Since the optimized
derivatives depend on x implicitly, simple replacement rules that are built-in Mathematica can not be applied.

AceGen code generator

OF(x)
ox

This generates FORTRAN code that returns coefficients F(x) |;=y, and x=x, Of the Taylor expansion of the function

3x2+Sin[x2} —Log[xz—l}.

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["Test", Real [x0$$, £0$$, £x08$]1];
x0 r SMSReal [x0$$];

X £ SMSFictive[];

£r3x*+8in[x?] -Log[x®-1];

f0 £ SMSReplaceAll[f, x -> x0];

fx e SMSD[f, x];

£x0 SMSReplaceAll[fx, x -> x0];
SMSExport[{f0, £x0}, {£f0$$, £x0$$}1];
SMSWrite[];

FilePrint["test.f"];

File: test.f Size: 908
Methods No.Formulae No.Leafs
Test 3 48

IEE R R R R R EE R EREEEEEEREREREEREREREREEREREEEREEREREREEEEEEEEREEE S

!* AceGen 2.502 Windows (24 Nov 10) *
1* Co. J. Korelc 2007 29 Nov 10 15:07:22%*
!**
! User : Full professional version
Evaluation time
Number of formulae

! 0 s Mode : Optimal
|

! Subroutine

!

!

3 Method: Automatic
Test size :48

48 subexpressions

324 bytes

Total size of Mathematica code
Total size of Fortran code

e se se es ee

!******************* S U B R O U T I N E kkhkkkhkkhkkkhkhkkkhkkkhkhkhkkhkkkhkkk*x
SUBROUTINE Test(v,x0,£f0,£fx0)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(5001),x0,£0,£x0
v(1ll)=x0**2
v(12)=(-1d0)+v(11)
£f0=3d0*v(1ll)-dlog(v(1l2))+dsin(v(1ll))
£fx0=2d0*x0%*(3d0-1d0/v(12)+dcos(v(1ll)))
END

Example 2: the variable that should be replaced does not exist

The E command creates variables accordingly to the set of rules. Here the expression y£-x did not create a new variable y resulting
in wrong replacement.

<< AceGen";
SMSInitialize["test"];
SMSModule["sub", Real[x$$]];
X £ SMSReal [x$$];

YE-X;

z £ Sin[y];

SMSReplaceAll[z, y » /3]

i

94 AceGen code generator

The F command always creates new variable and leads to the correct results.

<< AceGen" ;
SMSInitialize["test"];
SMSModule["sub", Real[x$$]];
X F SMSReal [x$$];

Y- x;

z £ Sin[y];

SMSReplaceAll[z, y -» i/ 3]

V3

2

Example 3: repeated use of SMSReplaceAll

Repeated use of SMSReplaceAll can produce large intermediate codes and should be avoided if possible.

<< AceGen";
SMSInitialize["test"];
SMSModule["sub", Real[x$$]1];
x £ SMSReal [xS];

y ESin[x];

z 1 Cos[x];

yO0 £ SMSReplaceAll[y, x » 0] ;
z0 r SMSReplaceAll[z, x » 0] ;

Better formulation.

<< AceGen" ;

SMSInitialize["test"];
SMSModule["sub", Real[x$$]];

X £ SMSReal [x$$];

y ESin[x];

z 1 Cos[x];

{y0, z0} SMSReplaceAll[{y, 2z}, x » 0];

Expression Optimization

The basic approach to optimization of the automatically generated code is to search for the parts of the code that when
evaluated yield the same result and substitute them with the new auxiliary variable. In the case of the pattern matching
approach only sub-expressions that are syntactically equal are recognized as "common sub-expressions". The signatures
of the expressions are basis for the heuristic algorithm that can search also for some higher relations among the expres-
sions. The relations between expressions which are automatically recognized by the AceGen system are:

AceGen code generator

95

description

simplification

(a) two expressions or sub—
expressions are the same

(b) result is an integer value

(c) opposite value

multiplication and addition

(e) inverse value

(d) intersection of common parts for

Vi1:=€1
€1 =€) — {
€ = Vi

e1=2—= e>7Z

Vi:=€1
€ = —€) — {
€ = —V;
ar ... °b1..‘j Vii= bl_]
Cy kodl j = al.‘.iobl j = a
bn:dn Ci ..k°d1 J=>01
: V=€
eI =E— = { 1
€ e = —

In the formulae above, e;, a;, b;, c¢;, d; are arbitrary expressions or sub-expressions, and v; are auxiliary variables.
Formula e; = e; means that the signature of the expression e; is identical to the signature of the expression e;. Expres-

sions do not need to be syntactically identical. Formula v; := ¢; means that a new auxiliary variable v; with value ¢; is

generated, and formula e; = v; means that expression ¢; is substituted by auxiliary variable v;.

Sub-expressions in the above cases do not need to be syntactically identical, which means that higher relations are
recognized also in cases where term rewriting and pattern matching algorithms in Mathematica fail. The disadvantage
of the procedure is that the code is generated correctly only with certain probability.

Let us first consider the two functions f; = x> — x> + 1 and f> = Abs[x] + x2.

Plot[{x3—x2+1, Abs [x] +x2}, {x, -2, 2}]

6

The value of fjis equal to the value of f, only for three discrete values of x. If we take random value for x&[-4,4], then
the probability of wrong simplification is for this case is negligible, although the event itself is not impossible. The
second example are functions f; =x and f, = Abs[x].

96 AceGen code generator

Plot[{x, AbS[x]}l {x, -2, 2}]

2F

We can see that, for a random x from interval [-4,4], there is 50% probability to make incorrect simplification and
consequently 50% probability that the resulting automatically generated numerical code will not be correct. The
possibility of wrong simplifications can be eliminated by replacing the Abs function with a new function (e.g. SMSAb-
s[x]) that has unique high precision randomly generated number as a signature. Thus at the code derivation phase the
SMSADbs function results in random number and at the code generation phase is translated into the correct form (Abs)
accordingly to the chosen language. Some useful simplifications might be overlooked by this approach, but the incor-
rect simplifications are prevented.

When the result of the evaluation of the function is a randomly generated number then by definition the function has an
unique signature. The AceGen package provides a set of "unique signature functions" that can be used as replacements
for the most critical functions as SMSAbs, SMSSqrt, SMSSign. For all other cases we can wrap critical function with
the general unique signature function SMSFreeze.

Differentiation (Automatic Differentiation, SMSD) is an example where the problems involved in simultaneous
simplification are obvious. The table below considers the simple example of the two expressions x , y and the differentia-
tion of y with respect to x. L(a) is an arbitrary large expression and v; is an auxiliary variable. From the computational
point of view, simplification A is the most efficient and it gives correct results for both values x and y. However, when
used in a further operations, such as differentiation, it obviously leads to wrong results. On the other hand, simplifica-
tion B has one more assignment and gives correct results also for the differentiation. To achieve maximal efficiency
both types of simplification are used in the AceGen system. During the derivation of the formulae type B simplification
is performed.

Original Simplification A Simplification B
x:=L(a) x:=L(a) vi:=L(a)
y := L (a)+x> y 1= x+x2 X:i=V
dy_ Yy _ _ 2
= 1 =1+2x y = Vi+X
Gy _
=

At the end of the session, before the FORTRAN code is generated, the formulae that are stored in global data base are
reconsidered to achieve the maximum computational efficiency. At this stage type A simplification is used. All the
independent variables (true independent or intermediate auxiliary) have to have an unique signature in order to prevent
simplification A (e.g. one can define basic variables with the SMSFreeze function x4SMSFreeze[L(a)]).

AceGen code generator 97

See also: Signatures of the Expressions

Signatures of the Expressions

The input parameters of the subroutine (independent variables) have assigned a randomly generated high precision real
number or an unique signature. The signature of the dependent auxiliary variables is obtained by replacing all auxil-
iary variables in the definition of variable with corresponding signatures and is thus deterministic. The randomly
generated high precision real numbers assigned to the input parameters of the subroutine can have in some cases effects
on code optimization procedure or even results in wrong code. One reason for the incorrect optimization of the expres-
sions is presented in section Expression Optimization. Two additional reasons for wrong simplification are
round-off errors and hidden patterns inside the sets of random numbers. In AceGen we can use randomly generated
numbers of arbitrary precision, so that we can exclude the possibility of wrong simplifications due to the round-off
errors. AceGen also combines several different random number generators in order to minimize the risk of hidden
patterns inside the sets of random numbers.

The precision of the randomly generated real numbers assigned to the input parameters is specified by the "Precision"
option of the SMSlInitialize function. Higher precision would slow down execution.

In rare cases user has to provide it's own signature or increase default precision in order to prevent situations where
wrong simplification of expressions might occur. This can be done by providing an additional argument to the sym-
bolic-numeric interface functions SMSReal and SMSInteger , by the use of function that yields an unique signature
(SMSFreeze, SMSFictive, SMSAbs, SMSSqrt) or by increasing the general precision (SMSlInitialize).

SMSReal[exte,code] create real type external data object
with the signature accordingly to the code

SMSInteger[exte,code] create integer type external data object with the
definition exte and signature accordingly to the code

SMSReal[i_List,code] = Map[SMSReal[H code]&,i]

User defined signature of input parameters.

code the signature is:

v_Real real type random number form interval [0.95 v, 1.05 v]
{vmin_Real,vmax_Real} real type random number form interval [vmin,vmax]
False default signature

Evaluation codes for the generation of the signature.

m Example 1

The numerical constants with the Infinity precision (11, m, Sqrt[2], 2/3, etc.) can be used in AceGen input without
changes. The fixed precision constants have to have at least SMSEvaluatePrecision precision in order to avoid wrong
simplifications. If the precision of the numerical constant is less than default precision (SMSInitialize) then AceGen
automatically increase precision with the SetPrecision[exp , SMSEvaluatePrecision] command.

<< AceGen" ;
SMSInitialize["test", "Language" -> "Mathematica", "Mode" -> "Debug"];
SMSModule["test"];

time=0 variable= 0 = {}

Xk}

98 AceGen code generator

v+ 3.1415;

Precision of the user input real number
{3.1415} has been automatically increased.
See also: Signatures of the Expressions

m Example 2

This initializes the AceGen system, starts the description of the "test" subroutine and sets default precision of the signatures to 40.

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran", "Precision" - 40];
SMSModule["test", Real[x$$, y$$], Integer[ns]];

Here variable x gets automatically generated real random value from interval [0,1], for variable y three interval is explicitly
prescribed, and an integer external variable n also gets real random value.

X F SMSReal [x$$];

y + SMSReal [y$$, {-100, 100}];
n r SMSInteger[n$$];

This displays the signatures of external variables x, y, and n .

{x, vy, n} // SMSEvaluate // Print

{0.512629635747678424947303865168894899875,
47.7412339308661873123794181249417015192,
4.641185606823421179019188449964375656913}

Linear Algebra

Enormous growth of expressions typically appears when the SAC systems such as Mathematica are used directly for
solving a system of linear algebraic equations analytically. It is caused mainly due to the redundant expressions,
repeated several times. Although the operation is "local" by its nature, only systems with a small number of unknowns
(up to 10) can be solved analytically. In all linear algebra routines it is assumed that the solution exist (det(A)#0).

SMSLinearSolve[A,B] generate the code sequence that solves the system of linear equations A x=
B analytically and return the solution vector

Parameter A is a square matrix. Parameter B can be a vector (one right-hand side) or a matrix (multiple right-hand
sides). The Gauss elimination procedure is used without pivoting.

SMSLUFactor[A] the LU decomposition along with the pivot list of M

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. The SMSLU-
Factor performs the factorization of matrix A and returns a new matrix. The matrix generated by the SMSLUFactor is a
compact way of storing the information contained in the upper and lower triangular matrices of the factorization.

SMSLUSolve[LU,B] solution of the linear system represented by LU and right—hand side B

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. Parameter B
can be a vector (one right-hand side) or a matrix (multiple right-hand sides).

AceGen code generator 99

SMSFactorSim[M] the LU decomposition along with the pivot list of symmetric matrix M

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. The SMSFac-
torSim performs factorization of the matrix A and returns a new matrix. The matrix generated by the SMSFactorSim is a
compact way of storing the information contained in the upper and lower triangular matrices of the factorization.

SMSInverse[M] the inverse of square matrix M

Simultaneous simplification is performed during the process. The Krammer's rule is used and simultaneous simplifica-
tion is performed during the process. For more than 6 equations is more efficient to use SMSLinearSolve[M,IdentityMa-
trix[M//Length]] instead.

SMSDet[M] the determinant of square matrix M

Simultaneous simplification is performed during the process.

SMSKrammer[M ,B] generate a code sequence that solves the system of linear equations A x=
B analytically and return the solution vector

The Krammer's rule is used and simultaneous simplification is performed during the process.

m Example

This generates the FORTRAN code that returns the solution to the general linear system of equations:

P T, b,
S S . T, | b,

<< AceGen" ;

SMSInitialize["test", "Language" -> "C"];
SMSModule["Test", Real[a$$[4, 4], b$SS[4], x$$[4]1];
a + SMSReal [Table[a$$[i, 71, {i, 4}, {i, 4}11;

b + SMSReal [Table[bS[i], {i, 4}]11;

X £ SMSLinearSolve[a, b];

SMSExport[x, x$$];

SMSWrite[];

File: test.c Size: 1425

Methods No.Formulae No.Leafs
Test 18 429

100

AceGen code generator

FilePrint["test.c"]

/***

* AceGen 2.502 Windows (18 Nov 10) *
* Co. J. Korelc 2007 24 Nov 10 13:05:43*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

User : USER

Evaluation time : 0 s Mode : Optimal
Number of formulae : 18 Method: Automatic
Subroutine : Test size :429

Total size of Mathematica code : 429 subexpressions

Total size of C code : 841 bytes*/

#include "sms.h"

[hrkkkkkkxkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkkhkkkkxkk/
void Test(double v[5001],double a[4][4],double b[4],double x[4])
{

v[40]=1e0/a[0][0];

v[21]=a[1][0]*Vv[40];

v[22]=a[1][1]-a[0][1]*V[21];

v[23]=a[1][2]-a[0][2]*V[21];

vi24]=a[l][3]-a[0][3]*v[21];

v[25]=a[2][0]*v[40];

v[26]=a[3][0]*v[40];

v[271=b[1]-b[0]*Vv[21];

v[28]=(a[2][1]-a[0][1]*V[25])/v[22];
v[29]=a[2][2]-a[0][2]*V[25]-Vv[23]*Vv[28];
v[30]=a[2][3]1-a[0]1[31*V[25]-Vv[24]1*V[28];
v[3l]=(a[3][1l]-a[0][1l]*Vv[26])/Vv[22];
v[32]1=b[2]-b[0]*V[25]-v[27]*V[28];
v[33]=(a[3][2]-a[0][2]*V[26]-v[23]*Vv[31])/Vv[29];
v[35]=(-b[3]+b[0]*V[26]1+V[27]*Vv[31]1+v[32]*Vv[33])/ (-
a[3][3]1+a[0][3]1*V[26]+V[24]*V[31]+Vv[30]1*V[33]);
v[36]1=(v[32]1-v[30]*v[35])/v[29];
v[37]=(v[27]-v[24]1*v[35]-v[23]*Vv[36])/Vv[22];
x[0]=(b[0]-a[0][3]1*Vv[35]-a[0]1[2]*v[36]-a[0][1]*V[37])*Vv[40];
x[11=v[37];

xX[2]=v[36];

x[3]=v[35];

}i

Tensor Algebra

SMSCovariantBase[{¢;, 2, 3}, {11,172, 13}] the covariant base vectors of transformation from the
coordinates {1y, 17,, 173} to coordinates {@;, >, P3}

Transformations ¢;, ¢,, ¢3 are arbitrary functions of independent variables 1y, 12, ns;. Independent variables
ni, N2, N3 have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates

AceGen code generator 101

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2} £ Array[SMSFictive[] &, {3}];

SMSCovariantBase[{r Cos[¢], rSin[¢], 2z}, {r, ¢, z}] // MatrixForm

cos|[dl] sin[dl] o
~Hsinfdl] cos[al] 1l o

0 0 1

SMSCovariantMetric[{¢, @2, #3}, {11,712, 73}] the covariant metrix tensor of transformation from
coordinates {1y, 172, 173} to coordinates {¢;, §>, P3}

Transformations ¢;, ¢,, ¢3 are arbitrary functions of independent variables n;, 712, ns;. Independent variables
N1s N2, N3 have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2z} r Array[SMSFictive[] &, {3}];

SMSCovariantMetric[{r Cos[¢], rSin[¢], 2z}, {r, ¢, 2z}] // MatrixForm

1 0 0
ono
0 0 1

—

SMSContravariantMetric[the contravariant metrix tensor of transformation
{¢1.02.03}, {m,m2,m3}] from coordinates {171, 772, 73} to coordinates {1, ¢2, ¢3}

Transformations ¢1, ¢,, ¢3 are arbitrary functions of independent variables i, 12, n3. Independent variables
N1, N2, N3 have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2} £ Array[SMSFictive[] &, {3}];

SMSContravariantMetric[{r Cos[¢], rSin[¢], 2z}, {r, ¢, 2}] // MatrixForm

1 0 0

0o -~ o
ﬂz

0 0 1

SMSChristoffell 1 [{¢} .02.03}, {71, n2, 13}] the first Christoffell symbol {i,j.k} of transformation
from coordinates {1, 17,, 173} to coordinates {@;, @,, ¢3}

102

AceGen code generator

Transformations ¢;, ¢,, ¢3 are arbitrary functions of independent variables n;, 12, ns;. Independent variables

N1, N2, N3 have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2} £ Array[SMSFictive[] &, {3}];

SMSChristoffelll[{r Cos[¢], rSin[¢], 2z}, {r, ¢, 2z}] // MatrixForm

OOOOIﬂOOOO

J—

0

d

0
0
0

o O O o O O

SMSChristoffell 1 [{¢} .02.03}, {171, m2,13}] the second Christoffell symbol 1"5 of transformation
from coordinates {1;, 172, 173} to coordinates {@;, ¢», P3}

Transformations ¢;, ¢,, ¢3 are arbitrary functions of independent variables n;, 712, ns;. Independent variables

N1s N2, N3 have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2z} r Array[SMSFictive[] &, {3}];

SMSChristoffell2[{r Cos[¢], r Sin[¢], 2z}, {r, ¢, z}] // MatrixForm

—_—
o O o
-

—_—
OOOOI“‘!—‘O
-

Ol_ﬁ "—'O

=

o O o o o

—_—
—

SMSTensorTransformation[

tensor transformation of arbitrary tensor field
tensor, transf, coord, index_types] tensor with indices index_types defined in curvilinear
coordinates coord under transformation transf

Transformations transf are arbitrary functions while coorinates coord have to be proper auxiliary variables with the
unique signature (see also SMSD). The type of tensor indices is specified by the array index_types where True means

AceGen code generator 103

covariant index and False contravariant index.
Example: Cylindrical coordinates

Transform contravariant tensor u! ={r2,r Sin[d¢], rz} defined in cylindrical coordinates {r.,z} into Cartesian

coordinates.

<< AceGen" ;

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2} £ Array[SMSFictive[] &, {3}];
SMSTensorTransforma'l:ion[{r2 , rSinf[¢], r z} ,

{r Cos[¢], rSin[¢], 2}, {r, ¢, 2}, {False}]

fcos|8l] xF* Hlsin[@), cos[8] sin[8] - Hsin[al], rl 2]}

SMSDCovariant[tensor, covariant derivative of arbitrary tensor field fensor with indices index.
transf, coord, index_types] defined in curvilinear coordinates coord under transformation transf

Transformations transf are arbitrary functions while coordinates coord have to be proper auxiliary variables with
unique signature (see also SMSD). The type of tensor indices is specified by the array index_types where True means
covariant index and False contravariant index.

The SMSDCovariant function accepts the same options as SMSD function.
Example: Cylindrical coordinates
Derive covariant derivatives u' |; of contravariant tensor u = {r2, r Sin[¢], r z} defined in cylindrical coordinates {r,$,z}.

<< AceGen";

SMSInitialize["test", "Language" -> "Mathematica"];
SMSModule["test"];

{r, ¢, 2} £ Array[SMSFictive[] &, {3}];
SMSDCovariant [{r2 , rSin[¢], r z} ,

{r Cos[¢], rSin[¢], z}, {r, ¢, 2z}, {False}] // MatrixForm
2 1] 1l sin[ﬂ} 0

2sin[ﬂ} ﬂ+cOs[ﬂ] ﬂ 0
zl 0 rl

Mechanics of Solids

Mechanics of solids functions:

SMSLameToHooke SMSHookeToLame . SMSHookeToBulk . SMSBulkToHooke
SMSPlaneStressMatrix . SMSPlaneStrainMatrix . SMSEigenvalues . SMSMatrixExp
SMSInvariantsI .SMSInvariantsJ

Bibliography

KORELC, Joze. Semi-analytical solution of path-independed nonlinear finite element models. Finite elem. anal. des.,
2011,47:281-287.

104 AceGen code generator

LENGIEWICZ, Jakub, KORELC, Joze, STUPKIEWICZ, Stanislaw., Automation of finite element formulations for
large deformation contact problems. Int. j. numer. methods eng., 2011, 85: 1252-1279.

KORELC, Joze, Automation of primal and sensitivity analysis of transient coupled problems. Computational mechan-
ics, 2009, 44(5):631-649.

Korelc J., (2002), Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes,
Engineering with Computers, 2002, vol. 18, n. 4,str. 312-327

Korelc, J. (1997a), Automatic generation of finite-element code by simultaneous optimization of expressions, Theoreti-
cal Computer Science, 187,231-248.

Gonnet G. (1986), New results for random determination of equivalence of expression, Proc. of 1986 ACM Symp. on
Symbolic and Algebraic Comp, (Char B.W ., editor), Waterloo, July 1986, 127-131.

Griewank A. (1989), On Automatic Differentiation, Mathematical Programming: Recent Developments and Applica-
tions, Kluwer Academic Publisher, Amsterdam, 83-108.

Hulzen J.A. (1983), Code optimization of multivariate polynomial schemes: A pragmatic approach. Proc. of [IEURO-
CAL'83, (Hulzen J.A., editor), Springer-Verlag LNCS Series Nr. 162.

Kant E. (1993), Synthesis of Mathematical Modeling Software, IEEE Software, May 1993.

Korele J. (1996), Symbolic Approach in Computational Mechanics and its Application to the Enhanced Strain Method,
Doctoral Dissertation, Institut of Mechanics, TH Darmstadt, Germany.

Korelc J. (1997b), A symbolic system for cooperative problem solving in computational mechanics, Computational
Plasticity Fundamentals and Applications, (Owen D.R.J., Ofiate E. and Hinton E., editors), CIMNE, Barcelona,
447-451.

Korele J., and Wriggers P. (1997c), Symbolic approach in computational mechanics, Computational Plasticity Funda-
mentals and Applications, (Owen D.R.J., Ofiate E. and Hinton E., editors), CIMNE, Barcelona, 286-304.

Korelc J., (2001), Hybrid system for multi-language and multi-environment generation of numerical codes, Proceedings
of the ISSAC'2001 Symposium on Symbolic and Algebraic Computation, New York, ACM:Press, 209-216

Korele, J. (2003) Automatic Generation of Numerical Code. MITIC, Peter. Challenging the boundaries of symbolic
computation : proceedings of the 5th International Mathematica Symposium. London: Imperial College Press, 9-16.

Leff L. and Yun D.Y.Y. (1991), The symbolic finite element analysis system. Computers & Structures,41,227-231.

Noor A K. (1994), Computerized Symbolic Manipulation in Structural Mechanics, Computerized symbolic manipula-
tion in mechanics, (Kreuzer E., editor), Springer-Verlag, New York, 149-200.

Schwartz J.T. (1980), Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27(4),
701-717.

Sofroniou M. (1993), An efficient symbolic-numeric environment by extending mathematica's format rules. Proceed-
ings of Workshop on Symbolic and Numerical Computation, (Apiola H., editor), University of Helsinki, Technical
Report Series, 69-83.

Wang P.S. (1986), Finger: A symbolic system for automatic generation of numerical programs in finite element
analysis, J. Symb. Comput, 2,305-316.

Wang P.S. (1991), Symbolic computation and parallel software, Technical Report ICM-9109-12, Department of
Mathematics and Computer Science, Kent State University, USA.

Wolfram, S. (1991), Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley.

AceGen code generator 105

Numerical Environments
Tutorials

Finite Element Environments Introduction

Numerical simulations are well established in several engineering fields such as in automotive, aerospace, civil engineer-
ing, and material forming industries and are becoming more frequently applied in biophysics, food production, pharma-
ceutical and other sectors. Considerable improvements in these fields have already been achieved by using standard
features of the currently available finite element (FE) packages. The mathematical models for these problems are
described by a system of partial differential equations. Most of the existing numerical methods for solving partial
differential equations can be classified into two classes: Finite Difference Method (FDM) and Finite Element Method
(FEM). Unfortunately, the applicability of the present numerical methods is often limited and the search for methods
which can provide a general tool for arbitrary problems in mechanics of solids has a long history. In order to develop a
new finite element model quite a lot of time is spent in deriving characteristic quantities such as gradients, Jacobean,
Hessian and coding of the program in a efficient compiled language. These quantities are required within the numerical
solution procedure. A natural way to reduce this effort is to describe the mechanical problem on a high abstract level
using only the basic formulas and leave the rest of the work to the computer.

The symbolic-numeric approach to FEM and FDM has been extensively studied in the last few years. Based on the
studies various systems for automatic code generation have been developed. In many ways the present stage of the
generation of finite difference code is more elaborated and more general than the generation of FEM code. Various
transformations, differentiation, matrix operations, and a large number of degrees of freedom involved in the derivation
of characteristic FEM quantities often lead to exponential growth of expressions in space and time. Therefore, addi-
tional structural knowledge about the problem is needed, which is not the case for FDM.

Using the general finite element environment, such as FEAP (Taylor, 1990), ABAQUS, etc., for analyzing a variety of
problems and for incorporating new elements is now already an everyday practice. The general finite element environ-
ments can handle, regardless of the type of elements, most of the required operations such as: pre-processing of the
input data, manipulating and organizing of the data related to nodes and elements, material characteristics, displace-
ments and stresses, construction of the global matrices by invoking different elements subroutines, solving the system
of equations, post-processing and analysis of results. However large FE systems can be for the development and testing
of new numerical procedures awkward. The basic tests which are performed on a single finite element or on a small
patch of elements can be done most efficiently by using the general symbolic-numeric environments such as Mathemat-
ica, Maple, etc. It is well known that many design flaws such as element instabilities or poor convergence properties
can be easily identified if we are able to investigate element quantities on a symbolic level. Unfortunately, symbolic-
numeric environments become very inefficient if there is a larger number of elements or if we have to perform iterative
numerical procedures. In order to assess element performances under real conditions the easiest way is to perform tests
on sequential machines with good debugging capabilities (typically personal computers and programs written in Fortran
or C/C++ language). In the end, for real industrial simulations, large parallel machines have to be used. By the classical
approach, re-coding of the element in different languages would be extremely time consuming and is never done. With
the symbolic concepts re-coding comes practically for free, since the code is automatically generated for several
languages and for several platforms from the same basic symbolic description.

The AceGen package provides a collection of prearranged modules for the automatic creation of the interface between
the finite element code and the finite element environmen. AceGen enables multi-language and multi-environment
generation of nonlinear finite element codes from the same symbolic description. The AceGen system currently sup-
ports the following FE environments:

= AceFem is a model FE environment written in a Mathematica's symbolic language and C (see AceFEM),

= FEAP is the research environment written in FORTRAN (see FEAP),

106 AceGen code generator

=> ELFEN®© is the commercial environment written in FORTRAN (see ELFEN).
> ABAQUSQO is the commercial environment written in FORTRAN (see ABAQUS).

The AceGen package is often used to generate user subroutines for various other environments. It is advisable for the
user to use standardized interface as described in User defined environment interface .

There are several benefits of using the standardized interface:

= automatic translation to other FE packages,

=> other researchers are able to repeat the results,

= commercialization of the research is easier,

= eventually, the users interface can be added to the list of standard interfaces.

The number of numercal environments supported by AceGen system is a growing daily. Please visit the www fgg.uni-
1j.si/symech/extensions/ page to see if the numerical environment you are using is already supported or www.fgg.uni-
1j.si/consulting/ to order creation of the interface for your specific environment.

All FE environments are essentially treated in the same way. Additional interface code ensures proper data passing to
and from automatically generated code for those systems. Interfacing the automatically generated code and FE environ-
ment is a two stage process. The purpose of the process is to generate element codes for various languages and environ-
ments from the same symbolic input. At the first stage user subroutine codes are generated. Each user subroutine
performs specific task (see SMSStandardModule). The input/output arguments of the generated subrutines are environ-
ment and language dependent, however they should contain the same information. Due to the fundamental differences
among FE environments, the required information is not readily available. Thus, at the second stage the contents of the
"splice-file" (see SMSWrite) that contains additional environment dependent interface and supplementary routines is
added to the user subroutines codes. The "splice-file" code ensures proper data transfer from the environment to the
user subroutine and back.

AceGen code generator 107

4 AceGen N

-symbolicinput - interface code
- FE formulation - init1 ali zati on
- uger subroutines - numerical integration

s

element source file

-

[@ { (Mathermtion (FORTRAN (
N

X 7T~

&

N

v AceFEM | ELFEN (AP |
CDriver || MDriver | AB:QUS

FE environment Y.

Automatic interface is already available for a collection of basic tasks required in the finite element analysis (see
SMSStandardModule). There are several possibilities in the case of need for an additional functionality. Standard user
subroutines can be used as templates by giving them a new name and, if necessary, additional arguments. The addi-
tional subroutines can be called directly from the environment or from the enhanced "splice-file". Source code of the
"splice-files" for all supported environments are available at directory $BaseDirectory/Applications/AceGen/Splice/.
The additional subroutines can be generated independently just by using the AceGen code generator and called directly
from the environment or from the enhanced "splice-file".

Since the complexity of the problem description mostly appears in a symbolic input, we can keep the number of data
structures (see Data structures) that appear as arguments of the user subroutines at minimum. The structure of the data
is depicted below. If the "default form" of the arguments as external AceGen variables (see Symbolic-Numeric Inter-
face) is used, then they are automatically transformed into the form that is correct for the selected FE environment. The
basic data structures are as follows:

= environment data defines a general information common to all nodes and elements (see Integer Type Environment
Data , Real Type Environment Data),

= nodal data structure contains all the data that is associated with the node (see Node Data),

= element specification data structure contains information common for all elements of particular type (see Domain
Specification Data),

= node specification data structure contains information common for all nodes of particular type (see Node Specifica-
tion Data),

= element data structure contains all the data that is associated with the specific element (see Element Data).

108 AceGen code generator

Standard FE Procedure

Description of FE Characteristic Steps

The standard procedure to generate finite element source code is comprised of four major phases:
A) AceGen initialization

- see SMSInitialize
B) Template initialization

- see SMSTemplate

- general characteristics of the element

- rules for symbolic-numeric interface
C) Definition of user subroutines

- see SMSStandardModule

- tangent matrix, residual, postprocessing, ...
D) Code generation

- see SMSWrite

- additional environment subroutines

- compilation, dll, ...

Due to the advantage of simultaneous optimization procedure we can execute each step separately and examine interme-
diate results. This is also the basic way how to trace the errors that might occur during the AceGen session.

Description of Introductory Example

Let us consider a simple example to illustrate the standard AceGen procedure for the generation and testing of a typical
finite element. The problem considered is steady-state heat conduction on a three-dimensional domain, defined by:

i(k@)+ﬁ(k@)+ﬁ(k@) +0Q=0 ondomain,

Ox ox ay ay 0z 0z

p-¢=0 essential boundary condition on T,
ap .

k o~ 4= 0 natural boundary condition on Ty,

where ¢ indicates temperature, k is conductivity, Q heat generation per unit volume, and ¢ and g are the prescribed
values of temperature and heat flux on the boundaries. Thermal conductivity here is assumed to be a quadratic function
of temperature:

k=ky+k ¢+k2¢2.
Corresponding weak form is obtained directly by the standard Galerkin approach as

L7766 k vp -6 Q|da- L&pwr:o.

Only the generation of the element subroutine that is required for the direct, implicit analysis of the problem is pre-
sented here. Additional user subroutines may be required for other tasks such as sensitivity analysis, postprocessing
etc.. The problem considered is non-linear and it has unsymmetric Jacobian matrix.

AceGen code generator 109

Step 1: Initialization
e This loads the AceGen code generator.

<< AceGen";

e This initializes the AceGen session. The AceFEM is chosen as the target numerical
environment. See also SMSInitialize.

SMSInitialize["ExamplesHeatConduction", "Environment" -> "AceFEM"];

e This initializes constants that are needed for proper symbolic-numeric interface (See
Template Constants). Three-dimensional, eight node, hexahedron element with one
degree of freedom per node is initialized.

SMSTemplate["SMSTopology" -» "H1", "SMSDOFGlobal" - 1,
"SMSSymmetricTangent" - False,
"SMSGroupDataNames" ->
{"kO -conductivity parameter", "kl -conductivity parameter",
"k2 -conductivity parameter", "Q -heat source"},
"sMspefaultbData" -> {1, 0, 0, 0}1];

Step 2: Element subroutine for the evaluation of tangent matrix and residual
e Start of the definition of the user subroutine for the calculation of tangent matrix and
residual vector and set up input/output parameters (see SMSStandardModule).

SMSStandardModule["Tangent and residual"];

Step 3: Interface to the input data of the element subroutine
e Here the coordinates of the element nodes and current values of the nodal temperatures
are taken from the supplied arguments of the subroutine.

XI r Table[SMSReal [nd$$[i, "X", j]1], {i, SMSNoNodes}, {j, SMSNoDimensions}];
¢I + Table[SMSReal[nd$$[i, "at", 111, {i, 8}1;

e The conductivity parameters kg, ki, k and the internal heat source Q are assumed to be
common for all elements in a particular domain (material or group data). Thus they are
placed into the element specification data field "Data" (see Element Data). In the case that
material characteristic vary substantially over the domain it is better to use element data
field "Data" instead of element specification data.

{kO, k1, k2, O} r SMSReal [Table[esS["Data", i], {i, 4}]11;

e Element is numerically integrated by one of the built-in standard numerical integration
rules (see Numerical Integration). This starts the loop over the integration points, where &,
n, { are coordinates of the current integration point and wGauss is integration point weight.

SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
== {&, n, £} r Table[SMSReal [es$$["IntPoints", i, Ig]], {i, 3}1;

Step 4: Definition of the trial functions
e This defines the trilinear shape functions N;, i=1,2,...,8 and interpolation of the physical
coordinates within the element. J,, is Jacobian matrix of the isoparametric mapping from
actual coordinate system X, Y, Z to reference coordinates &, 17, .

110

AceGen code generator

Step 5:

Reference frame Actual frame

INEL
A | 6 L - /8
Z [\E?‘< /
| /

En = {{_ll _ll _1}1 {11 '11 _l}l {11 1! _l}l {'11 1! _l}l
{-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}};

NIk Table[1/8 (1+&&En[i, 1]) (1+nEn[i, 2]) (1+&&En[i, 3]), {i, 1, 8}];

X + SMSFreeze [NI.XI];

Jg E SMSD[X, £]; Jgd k Det[Jg];

e The trial function for the temperature distribution within the element is given as linear
combination of the shape functions and the nodal temperatures ¢ = N,.¢,. The ¢, are
unknown parameters of the variational problem.

¢ ENI.QI;

Definition of the governing equations
e The implicit dependencies between the actual and the reference coordinates are given by
9% _ J. 1 9X;i
—Jvm

X 3. where J,, is the Jacobean matrix of the nonlinear coordinate mapping.
i J

D¢ £ SMSD[¢, X, "Dependency"” -> {E, X, SMSInverse[Jdg]}];

6¢ £ SMSD[¢, ¢I];

D&¢ £ SMSD[6¢, X, "Dependency" -> {E, X, SMSInverse[Jg]l}];

e Here is the definition of the weak form of the steady state heat conduction equations. The
strength of the heat source is multiplied by the global variable rdata3$/"Multiplier"].

kEkO+kl ¢+ k2 ¢%;
A r SMSReal [rdata$$["Multiplier"]];

wgp + SMSReal [es$$["IntPoints", 4, Ig]];

Rg £ Jgd wgp (k D6¢.Dd - 6 A Q) ;

e Element contribution to global residual vector R, is exported into the p$$ output
parameter of the "Tangent and residual" subroutine (see SMSStandardModule).

SMSExport [SMSResidualSign Rg, p$$, "AddIn" - True];

AceGen code generator 111

Step 6: Definition of the Jacobian matrix

This evaluates the explicit form of the Jacobian (tangent) matrix and exports result into the s$$ output parameter of the user
subroutine. Another possibility would be to generate a characteristic formula for the arbitrary element of the residual and the
tangent matrix. This would substantially reduce the code size.

Kg £ SMSD[Rg, ¢I];
SMSExport [Kg, s$$, "AddIn" » True];

This is the end of the integration loop.

SMSEndDo[];

Step 7: Post-processing subroutine

Start of the definition of the user subroutine for the definition and evaluation of post-processing quantities. The subroutine is not an
obligatory, however it makes the pos-processing much easier.

SMSStandardModule["Postprocessing"];

Here the nodal point post-processing quantitie "Temperature" is introduced and exported to array of the nodal point quantities
npost$$.

¢I - Table[SMSReal [nd$$[i, "at", 111, {i, 8}];
SMSNPostNames = {"Temperature"};
SMSExport [¢I, Table[npost$$[i, 1], {i, 8}]1]1;

Here the integration point post-processing quantitie "Conductivity" is introduced and exported to array of the integration point
quantities gpost$$.

{kO0, k1, k2, Q} + SMSReal [Table[es$$["Data", i], {i, Length[SMSGroupDataNames]}]];
SMsDo |

== {&, n, £} +r Table[SMSReal [es$$["IntPoints", i, Ig]], {i, 3}1;

®n={{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},

(-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}};

NIk Table[1l/8 (1+&=n[i, 1]) (1+n=n[i, 2]) (1 +C=n[i, 3]), {i, 1, 8}];

¢ ENI.PI;

k E kO +kl ¢ + k2 ¢2;

SMSGPostNames = {"Conductivity"};

SMSExport [k, gpost$$[Ig, 1]1]1;

, {Ig, 1, sMSInteger[es$$["id", "NoIntPoints"]]}

E

Step 8: Code Generation

At the end of the session AceGen translates the code from pseudo-code to the required script or compiled program language and
prepends the contest of the interface file to the generated code. See also SMSWrite. The result is ExamplesHeatConduction.c file
with the element source code written in a C language.

SMSWrite[];

File: ExamplesHeatConduction.c Size: 16296
Methods No.Formulae No.Leafs
SKR 208 4280
SPP 29 312

112 AceGen code generator

Template Constants

The AceGen uses a set of global constants that at the code generation phase define the major characteristics of the finite
element (called finite element template constants). In most cases the element topology and the number of nodal degrees
of freedom are sufficient to generate a proper interface code. Some of the FE environments do not support all the
possibilities given here. The AceGen tries to accommodate the differences and always generates the code. However if
the proper interface can not be done automatically, then it is left to the user. For some environments additional con-
stants have to be declared (see chapter Problem Solving Environments).

The template constants are initialized with the SMSTemplate function. Values of the constants can be also set or
changed directly after SMSTemplate command.

m Geometry

Abbreviation Description Default value

SMSTopology element topology (see Element Topology) o

SMSNoNodes number of nodes Automatic

SMSAdditionalNodes pure function (see Function) that returns additional Hold[{}&]
nodes. Arguments of the function are the coordinates
of topological nodes given as mesh input data.

Example: Hold[{(#1+#2)/2}&] adds one additional node in
the middle of nodes 1 and 2. Additional nodes can be
topological (see Cubic triangle, Additional nodes) or
auxiliary nodes (see Mixed 3 D Solid FE, Auxiliary Nodes)

SMSNodeID for all nodes a keyword that is used for Array['D"&,
identification of the nodes in the case of multi— SMSNoNodes]
field problems (see Node Identification,

Mixed 3 D Solid FE, Auxiliary Nodes)
SMSCreateDummyNodes | enable use of dummy nodes (see Node Identification) False
SMSNoDimensions number of spatial dimensions Automatic

AceGen code generator 113
m Degrees of Freedom, K and R
Abbreviation Description Default value
SMSDOFGlobal number of d.o.f per node for all nodes Array[
SMSNoDimensions&,
SMSNoNodes]
SMSSymmetricTangent | True = tangent matrix is symmetric True
False = tangent matrix is unsymmetrical
SMSNoDOFCondense number of d.o.f that have to be condensed 0
before the element quantities are
assembled (see Elimination of local unknowns ,
Mixed 3 D Solid FE, Elimination of Local Unknowns)
SMSCondensationData storage scheme for local condensation
(see Elimination of local unknowns)
SMSResidualSign 1 = equations are formed in the form K a +¥ =0 Automatic
—1 = equations are formed in the form K a=%¥
(used to ensure compatibility
between the numerical environments)
SMSDefaultIntegrationC- | default numerical integration Automatic
ode code (see Numerical Integration)
SMSNoDOFGlobal total number of global d.o f. calculated value
SMSNoAIIDOF total number of all d.o.f. calculated value
SMSMaxNoDOFNode maximum number of d.o.f. per node calculated value

114

AceGen code generator

m Data Management

Abbreviation

Description

Default value

SMSGroupDataNames

SMSDefaultData

SMSDataCheck

SMSNoTimeStorage

SMSNoElementData

SMSNoNodeStorage

SMSNoNodeData

SMSIDataNames

SMSRDataNames

SMSNoAdditionalData

SMSCharSwitch
SMSIntSwitch
SMSDoubleSwitch

description of the input data values that are

common for all elements with the same element
specification (e.g material characteristics)

(defines the dimension of the es$$["Data",j] data field)

default values for input data values

logical expression that checks the correctness of the
user supplied constants stored in es$$["Data" 7] . It
should return True if the data is correct.

total number of history dependent real
type values per element that have to be stored
in the memory for transient type of problems

(defines the dimension of the
ed$$["ht",j] and ed$$["hp",j] data fields)

total number of arbitrary real values per element
(defines the dimension of the ed$$["Data",j] data field)

total number of history dependent real type values per
node that have to be stored in the memory for transient
type of problems (can be different for each node)

(defines the dimension of the
nd$$[i,"ht",j] and nd$$[i,"hp",j] data fields)

total number of arbitrary real values

per node (can be different for each node)
(defines the dimension of the nd$$[i,"Data",j] data field)

list of the keywords of additional
integer type environment data variables (global)

list of the keywords of additional
real type environment data variables (global)

number of additional input data values

that are common for all elements with the same
element specification (the value can be expression)
(defines the dimension of the

es$$[" AdditionalData" i] data field)

list of character type user defined constants (local)
list of integer type user defined constants (local)

list of double type user defined constants (local)

{}

Table|O.,
SMSGroupDataNames
//Length]

True

Array[0&,
SMSNoNodes]

Array[idata$$[
"NoShapeParameters"]
xes$$["id",
"NoDimensions"]|&,
SMSNoNodes]

{}

AceGen code generator

115

m Graphics and Postprocessing

Abbreviation

Description

Default value

SMSGPostNames

SMNPostNames
SMSSegments

SMSSegmentsTriangulati-
on

SMSReferenceNodes

SMSPostNodeWeights

SMSAdditionalGraphics

description of the postprocessing
quantities defined per material point

description of the postprocessing quantities defined per node

for all segments on the surface of the

element the sequence of the element node

indices that define the edge of the segment

(if possible the numbering of the nodes should be done
in a way that the normal on a surface of the segment
represents the outer normal of the element)
SMSSegments={{1,2,3,4}}

SMSSegments={} ... no postprocessing

for all segments define a rule that

splits the segments specified by SMSSegments
into triangular or quadrilateral sub—

segments (the data is used to color the interior of
the segments and postprocessing of field variables)
SMSSegments={{{1,2,3},{1,3.,4}}}
SMSSegments={{}} ... no field postprocessing

coordinates of the nodes in the reference
coordinate system in the case of elements with
variable number of nodes (used in post processing)

additional weights associated with element nodes and used
for postprocessing of the results (see SMTPost). In general,
the weight of the nodes that form the

segments is 1 and for the others is 0.

pure function (see Function) that is called for each element
and returns additional graphics primitives per element
SMSAdditionalGraphics[

{element index, domain index list of node indices},

True if node marks are required,

True if boundary conditions are required,

{node coordinates for all element nodes}

]
e.g. Hold[{Line[{#4[1],84[2]}]}&] would produce

a line connecting first and second element node

{}

{}

Automatic

Automatic

Automatic

Automatic

Hold[{}&]

m Sensitivity Analysis

Abbreviation Description Default value

SMSSensitivityNames description of the quantities for which "
parameter sensitivity pseudo—load code is derived

SMSShapeSensitivity True = shape sensitivity pseudo—load code is derived False
False = shape sensitivity is not enabled

116 AceGen code generator

See also: Standard user subroutines , SMTSensitivity, SMTAddSensitivity, Standard user subroutines, Solid, Finite
Strain Element for Direct and Sensitivity Analysis, Parameter, Shape and Load Sensitivity Analysis of Multi-Domain
Example .

m AceFEM Solution Procedure Specific

Abbreviation Description Default value

SMSMMAlnitialisation list of arbitrary length Mathematica's codes and additional Hold[]
function definitions executed after the SMT Analysis
command (wrapping the code in Hold prevents evaluation)

SMSMMANextStep short Mathematica's code executed after SMTNextStep Hold[]
command (wrapping the code in Hold prevents evaluation)
SMSMMAStepBack short Mathematica's code executed after SMTStepBack Hold[]
command (wrapping the code in Hold prevents evaluation)
SMSMMAPrelteration short Mathematica's code executed before SMTNextStep Hold[]
command (wrapping the code in Hold prevents evaluation)
SMSPostlterationCall force one additional call of the SKR user subroutines False

after the convergence of the global solution has been
archived in order to improve accuracy of the solution
of additional algebraic equations at the element level
(see Three Dimensional, Elasto—Plastic Element)

m Description of the Element for AceShare

Abbreviation Description Default value
SMSMainTitle description of the element (see SMSVerbatim "

how to insert special characters such as \n or ")
SMSSubTitle description of the element "
SMSSubSubTitle description of the element "
SMSBibliography reference "

m Environment Specific (FEAP,ELFEN, user defiend environments, ...)

SMSUserDataRules user defined replacement rules that transform standard {}
input/output parameters to user defined input/output
parameters (see also User defined environment interface)

FEAPS$: FEAP specific template constants
described in chapter FEAP (see FEAP)

ELFENS$: ELFEN specific template constants
described in chapter ELFEN (see ELFEN)

onstants defining the general element characteristics .

AceGen code generator 117

Element Topology

The element topology defines an outline of the element, spatial dimension, number of nodes, default number of DOF
per node, etc. The topology of the element can be defined in several basic ways:

When the element has one of the standard topologies with fixed number of nodes, then the
proper interface for all supported environments is automatically generated. E.g. the
SMSTemplate[“SMSTpology”-> “Q1”’] command defines two dimensional, 4 node
element.

Standard topology with fixed number of nodes can be enhanced by an arbitrary number of
additional nodes (see SMSAdditionalNodes , SMSNoNodes). E.g. the
SMSTemplate[“SMSTopology”—"T1”, SMSNoNodes -4, SMSAdditionalNodes—
Hold[{(#1+#2+#3)/3}&] command defines an element with the basic outline as three
node triangle and with an additional node at the center of the element. In that case,
various subsystems (e.g. mesh generation and post-processing) assume that the first three
nodes form the standard triangle. At the mesh generation phase only the 3 nodes of the
underlying “T1” topology have to be given and the forth node is generated automatically.
See also: Cubic triangle, Additional nodes .

Element topology with arbitrary number of nodes and nonstandard numbering of nodes,
but known general topology is defined with an “X” at the end. E.g. the
SMSTemplate[“SMSTopology”—"TX”, SMSNoNodes —5] command defines an element
that has a triangular shape and 5 nodes, but the numbering of the nodes is arbitrary. All
nodes have to be specified at the mesh generation phase.

If the element topology is completely unknown (“SMSTopology”—"XX"”), then the

number of dimensions and the number of nodes have to be specified explicitly and the
proper interface is left to the user.

The coordinate systems in the figures below are only informative (e.g. X, Y can also stand for axisymmetric coordinate

system X, Y, ¢).

One dimensional

Code Description

Node numbering

arbitrary number of nodes

"XX" | user defined or arbitrary
unknown topology

"DI1" 1 D element with 2 nodes 1-2

"D2" 1 D element with 3 nodes 1-2-3

"DX" 1 D element with arbitrary

"V1" 1 D point

Two dimensional

Code Description

Node numbering

"v2" 2 D point

1

"L1" 2 D curve with 2 nodes

118

AceGen code generator

"L2" 2 D curve with 3 nodes
L2
‘/x/—“—*n,
S -—
1
"LX" 2D curve with arbitrary
arbitrary number of nodes
and arbitrary numbering
"T1" 2 D Triangle with 3 nodes .
(numerical T1 -
integration rules and post—
processing routines assume
"AREA CCORDINATES"
of the reference element!)
"
1 2
"T2" 2 D Triangle with 6 nodes
(numerical
integration rules and post—
processing routines assume
"AREA CCORDINATES"
of the reference element!)
"TX" | 2D Triangle with arbitrary
arbitrary number of nodes
and arbitrary numbering
"Q1" 2 D Quadrilateral with 4 nodes 4
Ql
3
"
1 Z
"Q2" 2 D Quadrilateral with 9 nodes
Q2 4 i
3
8
6
5 7

1

AceGen code generator

119

||Q2$ll

||QX||

2 D Quadrilateral with 8 nodes

2 D Quadrilateral with
arbitrary number of nodes
and arbitrary numbering

arbitrary

Three dimensional

120

AceGen code generator

Code Description

Node numbering

"v3" |3 D point

1

"p2" 3 D Triangle with 6 nodes

"C1" 3 D curve with 2 nodes
C1
/‘
1
"C2" 3D curve with 3 nodes
C2
~ 2
3 &
1
"CX" 3 D curve with arbitrary
arbitrary number of nodes
and arbitrary numbering
"P1" 3 D Triangle with 3 nodes .
J
P1
"
1 2

"S2" 3 D Quadrilateral with 9 nodes

S1

"PX" | 3D Triangle with arbitrary
arbitrary number of nodes
and arbitrary numbering
"S1" 3 D Quadrilateral with 4 nodes
4

Lad

AceGen code generator

121

llszsll

3 D Quadrilateral with 8 nodes

(S

lsJ

IISXU

3 D Quadrilateral with
arbitrary number of nodes
and arbitrary numbering

arbitrary

122

AceGen code generator

Code

Description

Node numbering

llol n

ll02ll

||OX"

3 D Tetrahedron with 4 nodes
(numerical

integration rules and post—
processing routines assume
"AREA CCORDINATES"
of the reference element!)

3 D Tetrahedron with 10 nodes
(numerical

integration rules and post—
processing routines assume
"AREA CCORDINATES"
of the reference element!)

3 D Tetrahedron with
arbitrary number of nodes
and arbitrary numbering

—a

3

arbitrary

llHl n

llH2ll

3 D Hexahedron with 8 nodes

3 D Hexahedron with 27 nodes

TTS

AceGen code g

enerator

123

||H2$ll

||HX n

3 D Hexahedron with 20 nodes

3 D Hexahedron with
arbitrary number of nodes
and arbitrary numbering

arbitrary

Node

Identification

The node identification is a string that is used for identification of the nodes accordingly to the physical meaning of the
nodal unknowns. Node identification is used by the SMTAnalysis command to construct the final FE mesh on a basis
of the user defined topological mesh. Node identification can have additional switches (see table below). No names are
prescribed in advance, however in order to have consistent set of elements one has to use the same names for the nodes
with the same physical meaning. Standard names are: "D" - node with displacements for d.o.f., "DFi" - node with

displacements and rotations for d.o.f., "T"-node with temperature d.o.f, "M"- node with magnetic potential d.o f. etc..

Accordingly to the node identification switches a node can be one of three basic types:

Topological node

Topological node belongs to a specific point in space. It can have associated unknowns.

Auxiliary node

Auxiliary node does not belong to a specific point in space and is created automatically.
Auxiliary node can have associated unknowns. Instead of the nodal coordinates a Null
sign must be given. The actual coordinates in a data base are set to zero. An auxiliary

124

AceGen code generator

node can be a local auxiliary node, thus created for each element separately or a global
auxiliary node thus created at the level of the structure.
See also SMSAdditionalNodes, Mixed 3D Solid FE, Auxiliary Nodes

Dummy node

Dummy node does not belong to a specific point in space and have no associated
unknowns. Instead of the nodal coordinates a Null sign must be given. The actual
coordinates of the node in a data base are set to zero. Only one nodal data structure is
generated for all dummy nodes with particular node identification. Dummy nodes can
only appear as automatically generated additional nodes.

Switch Description

-LP The node with the switch —~LP is a local auxiliary node. The —
LP switch implies switches —P —S —F -T.

-GP The node with the switch —GP is a global auxiliary node. The —
GP switch implies switches —P —S —F —E.

-D The node with switch —

D is a standard dummy node. The "-D" switch implies switches — C —F — S.

-M A node with the switch M becomes a real node (topological or auxiliary) if there already exist a
node with the same node specification and the same coordinates introduced by other element and
dummy if the corresponding node does not exist (the switch can be used in the case of multi—
field problems for nodes representing secondary fields that are not actually calculated).

asic node identifications switches.

Switch Description
-P The node with the switch —P is auxiliary node. The —P switch implies switches —S —F.
-C The unknowns associated with the nodes with the switch —

C are initially constrained (by default all the unknowns are initially unconstrained).
-T A node with the switch —T is ignored by the "Tie" command (see also SMTAnalysis).
=S Switch indicates nodes that can not be located and selected by

coordinates alone (node identification has to be given explicitly as a part of

criteria for selecting nodes to select nodes with —S switch, see also Selecting Nodes).
-E An unknown variables associated with the node are placed at the end of the list of unknowns.
-L The equations associated with the nodal unknowns

always result in zeros on the main diagonal of the tangent matrix

(e.g. for Lagrange type unknowns).
—AL The equations associated with the nodal unknowns might

result (or not) in zeros on the main diagonal of the tangent matrix

(e.g. for Augmented Lagrange type unknowns).
-F All nodes with the switch —

F are ignored by the SMTShowMesh["Marks"—>"NodeNumber"] command,

but they can be used to define the edge of the elements (see SMSSegments).

etailed node identifications switches.

AceGen code generator 125

® During the final mesh generation two or more nodes with the same coordinates and the
same node identification are automatically joined (tied) together into a single node. Tieing
of the nodes can be suppressed by the - T switch. All the nodes that should be unique for
each element (internal nodes) should have - T switch in order to prevent accidental tieing.

e The dummy node mechanism can be used to generate elements with variable number of
real nodes. For example the contact element has only slave nodes when there is no contact
and slave and master segment nodes in the case of contact. Thus, the master segments
nodes are dummy nodes if there is no contact and real nodes in the case of contact.

e The string type identification is transformed into the integer type identification at run
time. Transformation rules are stored in a SMSNodelIDIndex variable.

e Example: "simc -F -C -L" identifies the node with the identification "simc" that are not
shown on a graphs, unknowns associated with the node are initially constrained and the
resulting tangent matrix has zeros on the main diagonal.

Numerical Integration

The coordinates and the weight factors for numerical integration for several standard element topologies are available.
Specific numerical integration is defined by its code number.

Code Description No. of points

0 numerical integration is not used 0

default integration code is taken

. topology dependent
accordingly to the topology of the element

>0 integration code is taken accordingly to the given code

126

AceGen code generator

One dimensional

Cartessin coordinates of the reference element: { ,, {} € [-1,1] x [0,0] x [0,0]

Code Description];If())t:n(;‘f Disposition

20 1 point Gauss 1 ®

21 2 point Gauss 2 ® ®

22 3 point Gauss 3 ——o—0—
23 4 point Gauss 4 - ® ® -
24 5 point Gauss 5 —0—0—0—0
25 6 point Gauss 6 *—0—0—0—00
26 7 point Gauss 7 *-0—0—0—0—00
27 8 point Gauss 8 *0—0—0—0—000
28 9 point Gauss 9 00-0—0—0—0—0-00
29 10 point Gauss 10 000 0—0—0—0-000
30 2 point Lobatto 2 ® ®
31 3 point Lobatto 3 ® ® L]
32 4 point Lobatto 4 ® ® @ L J
33 5 point Lobatto 5 *—o—o—0—0
34 6 point Lobatto 6 *-o0—0—0—090

AceGen code generator

127

Quadrilateral

Cartessin coordinates of the reference element: {{ ,,{} € [-1,1] x [-1,1] x [0,0]

Code Description Noj of Disposition
points
1 1 point integration 1 ()
[] (]
2 2x2 Gauss integration 4
[] []
([[([
3 3%3 Gauss integration 9 e o o
([([([
([([
4 5 point special rule 5 °
([([
5 points in nodes 4
{19+N,19+N} NXN Gauss integration (N<10) N2
NXN Lobatto
29+N,29+N 2
(29+N.29+N} integration (2<N=<6) N

128

AceGen code generator

Triangle

AREA coordinates of the reference element: {{ ., {} € [0,1] x [0,1] x [0,0]

Code Description Noj of Disposition
points
12 1 point integration 1 A
13 3 point integration 3 / \
14 3 point integration 3 A
16 4 point integration 4 A
17 77 point integration 7 A

AceGen code generator

129

Tetrahedra

AREA coordinates of the reference element: {{ ,, {} € [0,1] x [0,1] x [0,1]

Code Description No: of Disposition
points
15 1 point integration 1 %
18 4 point integration 4 %
19 5 point integration 5 %
Hexahedra

Cartessin coordinates of the reference element: {{ 7, {} € [-1,1] x [-1,1] x [-1,1]

Code

Description

No. of
points

Disposition

1 point integration

X

130

AceGen code generator

10

11

{19+N,
19+N,19+N}

{29+N,
29+N,294+N}

2x2x2 Gauss integration

3x3x3 Gauss integration

4x4x4 Gauss integration

9 point special rule

points in nodes

NXxNxN Gauss
integration (N<10)

NXxNxN Lobatto
integration (2<N=<6)

27

64

N3

SaaE &

AceGen code generator 131

Implementation of Numerical Integration

Numerical integration is available under all supported environments as a part of supplementary routines. The coordi-
nates and the weights of integration points are set automatically before the user subroutines are called. They can be
obtained inside the user subroutines for the i-th integration point in a following way

§i+SMSReal [esS["IntPoints",1,1i]]
ni+rSMSReal[esS["IntPoints",2,1i]]
C;+rSMSReal [esS ["IntPoints",3,1]]
wi+SMSReal[es$$["IntPoints",4,1]]

where {&; n;, {;} are the coordinates and w; is the weight. The coordinates of the reference element are CARTESIAN

for the one dimensional, quadrilateral and hexahedra topologies and AREA coordinates for the triangle and tetrahedra
topologies. The integration points are constructed accordingly to the given integration code. Codes for the basic one
two and three dimensional numerical integration rules are presented in tables below. Basic integration codes can be
combined in order to get more complicated multi-dimensional integrational rules. The combined code is given in the
domain specification input data as a list of up to three basic codes as follows:

{codeA} = codeA
{codeA,codeB}

{codeA,codeB,codeC}

where codeA, codeB and codeC are any of the basic integration codes. For example 2x2x5 Gauss integration can be
represented with the code {2, 24} or equivalent code {21, 21, 24}. The integration code 7 stands for three dimensional
8 point (2x2x2) Gauss integration rule and integration code 21 for one dimensional 2 point Gauss integration. Thus the

integration code 7 and the code {21,21,21} represent identical integration rule.

The numbering of the points is for the cartesian coordinates depicted below.

® 5 on(n,-T+1

132 AceGen code generator

Example 1

This generates simple loop over all given integration points for 2D integration.

SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
{§, w} r Table[SMSReal [esS["IntPoints", i, Ig]] &, {i, {1, 4}}1;

SMSEndDo[];

This generates simple loop over all given integration points for 2D integration.

SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
{&, n, w} r Table[SMSReal [es$$["IntPoints", i, Ig]] &, {i, {1, 2, 4}}];

SMSEndDo[];

This generates simple loop over all given integration points for 3D integration.

SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
{§&, n, £, w} r Table[SMSReal [es$$["IntPoints", i, Ig]] &, {i, {1, 2, 3, 4}}]1;

SMSEndDo[];

Example 2

In the case of the combined integration code, the integration can be also performed separately for each set of points.

{nA, nB, nC} r SMSInteger[{es$$["id", "NoIntPointsA"],
es$$["id", "NoIntPointsB"], es$$["id", "NoIntPointsC"]}]
SMSDo[i&, 1, nA];
£+ SMSReal[es$$["IntPoints", 1, i§]1];

SMSDo[in, 1, nB];
n + SMSReal[es$$["IntPoints", 2, (in-1) nA+1]];

SMSDo[iZ, 1, nC];
£+ SMSReal[es$$["IntPoints", 3, (i€-1) nAnB+1]];
w + SMSReal [es$$["IntPoints", 4, i+ (in-1) nA + (if-1) nAnB]];

SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

Elimination of local unknowns

Some elements have additional internal degrees of freedom that do not appear as part of formulation in any other
element. Those degrees of freedom can be eliminated before the assembly of the global matrix, resulting in a reduced
number of equations. The structure of the tangent matrix and the residual before the elimination should be as follows:

Ky, Ky (Au") (-Ry n
n (N) = —R! = Keond AU" = —Reong

n

hu hh
where u is a global set of unknowns, 'n' is an iteration number and h is a set of unknowns that has to be eliminated. The
built in mechanism ensures automatic condensation of the local tangent matrix before the assembly of the global
tangent matrix as follows:

AceGen code generator 133

n n n
Keona =K, — K, H,

n n n
Rcond = Ru + uh Hb

where H,, is a matrix and H, a vector defined as

-1
Hclzl = Klrllh Inm .

-1
Hy =-Ki, R},
The actual values of the local unknowns are calculated first time when the element tangent and residual subroutine is
called by:
W' =h"+H, - H, Au" .

Three quantities have to be stored at the element level for the presented scheme: the values of the local unknowns h™,
the HY matrix and the H matrix. The default values are available for all constants, however user should be careful that

the default values do not interfere with his own data storage scheme. When default values are used, the system also
increases the constants that specify the allocated memory per element (SMSNoTimeStorage and SMSNoElementData).

The total storage per element required for the elimination of the local unknowns is:
SMSNoDOFCondense+SMSNoDOFCondense+SMSNoDOFCondense*SMSNoDOFGlobal

The template constant SMSCondensationData stores pointers at the beginning of the corresponding data field.

Data | Position Dimension Default for AceFEM
h" SMSCondensationData[[1]] SMSNoDOFCondense edS["ht",1]
. d$$[nhtu
H' |SMSCondensationData[[2 © ’
b ondensationData[[2]] SMSNoDOFCondense | gy oo DOFCondense-+1]
. SMSNoDOFCondenses edS["ht"
H? SMSCond tionData[[3 ’
a ondensationData[[3]] SMSNoDOFGlobal 2 SMSNoDOFCondense-+1]
ed$$["ht”,
2 SMSNoDOFCondense+
. SMSNoDOFCondensex SMSNoDOFCondensex*
n M D 4
oh SMSCondensationDatal[4]] NoSensParameters SMSNoDOFGlobal+
(idata$$["SensIndex"]—1)x
SMSNoDOFCondense+1]

torage scheme for the elimination of the Tocal unknowns.

It is assumed that the sensitivity of the local unknowns (Sh") is stored as fol-
lows:

{% % L % % BhSMSNoDOFCondcnsc}
apl ’ apZ > 6pN05cnsParamclcrs ’ 0p] ’ 617] > a.17NoScnstwamclcrs

All three inputs given below would yield the same default storage scheme if no time storage was previously prescribed.
See also: Mixed 3D Solid FE, Elimination of Local Unknowns .

SMSTemplate["SMSTopology" -» "H1", "SMSNoDOFCondense" - 9]

SMSTemplate["SMSTopology" -» "H1", "SMSNoDOFCondense" » 9,
"SMSCondensationData" -> ed$$["ht", 1], "SMSNoTimeStorage" - 9]

SMSTemplate["SMSTopology" -» "H1", "SMSNoDOFCondense" - 9,
"SMSCondensationData" -» {ed$$["ht", 1], ed$$S["ht", 10],
edS["ht", 19], edSS["ht", 235+9 (-1 + idataS["SensIndex"])]1},
"SMSNoTimeStorage" -» 234 + 9 idata$$["NoSensParameters"]]

134 AceGen code generator

Example

Let assume that SMSNoTimeStorage constant has value nht before the SMSWrite command is executed and that the
local unknows were allocated by the "SMSNoDOFCondense" — nlu template constant. The true allocation of the
storage is then done automatically by the SMSWrite command. The proper AceGen input and the possition of the data
within the "ht" history filed that corresponds to the input is as follows:

SMSInitialize["test", "Environment" - "AceFEM"];
SMSTemplate["SMSTopology" -» "01",
"SMSNoTimeStorage" -> nht, "SMSNoDOFCondense" - nlu]

hi + SMSReal [Array[ed$$S["ht", nht+ #] &, nlul]l;
j r SMSInteger[idata$$["SensIndex"]];
6hi £ SMSReal [
Array[ed$$S["ht", nht + 2 nlu + nlu x SMSNoDOFGlobal + (j - 1) *nlu + #] &, nlul];

SMSWrite[]
Data | Position of i—th element position
h" h"[i] ed$$["ht" nhr+i]
b bl edS["ht" nht+nlu+i]
H] H}[i] ed$$["ht" nhr+2 nlu+i]
ed$$[llhtll s
Sho oh"[{] for j nht+2 nlu+nlus
—th sensitivity parameter SMSNoDOFGlobal+
(j=D=nlu+i]

Standard user subroutines

m Subroutine: "Tangent and residual"

The "Tangent and residual" standard user subroutine returns the tangent matrix and residual for the current values of
nodal and element data.

See also SMSStandardModule , Standard FE Procedure .

m Subroutine: "Postprocessing"

The "Postprocessing" user subroutine returns two arrays with arbitrary number of post-processing quantities as
follows:

= gpost$$ array of the integration point quantities with the dimension "number of integration points"x "number
of integration point quantities",

> npost$$ array of the nodal point quantities with the dimension "number of nodes"x "number of nodal point
quantities".

The dimension and the contents of the arrays are defined by the two vectors of strings SMSGPostNames and SMSNPost-
Names. They contain the keywords of post-processing quantities. Those names are also used in the analysis to identify
specific quantity (see SMTPostData , SMTPost).

The keywords can be arbitrary. It is the responsibility of the user to keep the keywords of the post-processing quantities
consistent for all used elements. Some keywords are reserved and have predefined meaning as follows:

AceGen code generator 135

keyword Description

"DeformedMeshX" (see "DeformedMesh"—
True option of SMTShowMesh command)

"DeformedMeshY" (see "DeformedMesh"—
True option of SMTShowMesh command)

"DeformedMeshZ" (see "DeformedMesh"—
True option of SMTShowMesh command)

This outlines the major parts of the "Postprocessing" user subroutine.

SMSTemplate|[
"SMSSegments" - .., "SMSReferenceNodes" - ...,
"SMSPostNodeWeights" - .., "SMSAdditionalGraphics" - ..

1

SMSStandardModule["Postprocessing"];

SMSGPostNames = {"sxx", "Syy", "Sxy", ...};
SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];

SMSExport [{Sxx, Syy, Sxy, ...}, gpost$$[Ig, #1] &];
SMSEndDo[];

SMSNPostNames = {"DeformedMeshX", "DeformedMeshY", "DeformedMeshz", "u", "v", ...};

SMSExport [{{ui[[1]1], vi[[11], ...}, {ui[[2]]1, vi[[2]1, ...}, ...},
Table[npost$$[i, j], {i, 1, SMSNoNodes}, {j, 1, Length[SMSNPostNames]}]];

Integration point quantities are mapped to nodes accordingly to the type of extrapolation as follows:
Type 0: Least square extrapolation from integration points to nodal points is used.

Type 1: The integration point value is multiplied by the weight factor. Weight factor can be e.g the value of the shape
functions at the integration point and have to be supplied by the user. By default the last NoNodes integration point
quantities are taken for the weight factors (see SMTPostData , SMTPost).

The type of extrapolation is defined by the value of idata$$["ExtrapolationType"] (Integer Type Environment Data) .
The nodal value is additionally multiplied by the user defined nodal wight factor that is stored in element specification
data structure for each node (es$$["PostNodeWeights" nodenumber]). Default value of the nodal weight factor is 1 for
all nodes. It can be changed by setting the SMSPostNodeWeights template constant.

m Subroutine: "Sensitivity pseudo-load" and "Dependent sensitivity"

The "Sensitivity pseudo-load" user subroutine returns pseudo-load vector used in direct implicit analysis to get sensitivi-
ties of the global unknowns with respect to arbitrary parameter.

See also: SMTSensitivity, SMTAddSensitivity, Standard user subroutines, Solid, Finite Strain Element for Direct and
Sensitivity Analysis, Parameter, Shape and Load Sensitivity Analysis of Multi-Domain Example .

136 AceGen code generator

SensType code Description SensTypelndex parameter

1 parameter sensitivity |an index of the selected parameter

as specified in a description of the element
(WARNING! The same material constant can

have different SensTypelndex in different elements)

2 shape sensitivity an index of the current shape parameter
implicit sensitivity it has no meaning for implicit sensitivity
4 essential boundary an index of the current boundary condition

condition sensitivity | sensitivity parameter (essential or natural)

5 natural boundary an index of the current boundary condition
condition sensitivity | sensitivity parameter (essential or natural)

Codes for the "SensType™ and "SensTypelndex" switches.

AceGen code generator 137

Here is a shematic example how the sensitivity pseudo-load vector can be evaluated.

138

AceGen code generator

(*keywords used to identify parameters and a switch
that indicated availability of the shape sensitivityx)
SMSTemplate[
, "SMSSensitivityNames" -» {"E -elastic modulus", ...}
, "SMSShapeSensitivity" -> True

(*# index of the current sensitivity parameterx)

SensIndex + SMSInteger[idata$$["SensIndex"]];

(» type of the parameterx)

SensType SMSInteger[es$$["SensType", SensIndex]];

(*# index of the parameter inside the type groupx)
SensTypeIndex + SMSInteger[es$$["SensTypeIndex", SensIndex]];

¢ £ SMSFictive[];
(#¢ -current material parameter is introduced as
fictitious parameter that can represent arbitrary parameters)

(#define derivatives of all material
parameters with respect to the current parameter %)
{Em, v, thick, 0x, Qy} + Table[

SMSReal[es$$["Data", i], "Dependency" -

{¢, SMSKroneckerDelta[l, SensType] SMSKroneckerDelta[i, SensTypeIndex]}]

, {i, 1, 5}1;

(#- define derivatives of node coordinates with respect to the current parameter

- the shape velocity field is by default
stored in a nodal data field nd$s[i, "sX",j, k] *)
6XYZ £ SMSIf [SensType == 2
, SMSReal [

Table[ndS[i, "sX", SensTypelIndex, j], {i, SMSNoNodes}, {j, SMSNoDimensions}]]

, Table[0, {i, SMSNoNodes}, {j, SMSNoDimensions}]
1;

XYZ + Table[SMSReal [nd$$[i, "X", j], "Dependency" -» {¢, 6XYZ[[i, 7]11}1,

{i, SMSNoNodes} , {j, SMSNoDimensions}];

(# - define derivatives of essential boundary conditions
- the BC velocity field is by default
stored in a nodal data field nd$s[i, "sBt",j, k]*)
6dof £ SMSIf[SensType ==
, Table[
SMSIsDOFConstrained [SMSInteger[nd$$[i, "DOF", 1],
SMSReal [nd$$[i, "sBt", SensTypelIndex, j]], O]
, {1, SMSNoNodes}, {j, SMSDOFGlobal[[i]]}]
, Table[0, {i, SMSNoNodes}, {j, SMSDOFGlobal[[i]]}]
1;

dof + Table[SMSReal [nd$$[i, "at", j], "Dependency" - {¢, 6dof[[i, F11}1,

{i, SMSNoNodes}, {j, SMSDOFGlobal[[i]]}];

(#... body of the subroutine that evaluates residual R ... *)

(#evaluate sensitivity pseudo-load vector for current sensitivity parameterx)

SMSExport [SMSD[R, ¢], pS$$];

AceGen code generator

139

m Subroutine: "Tasks"

The "Tasks" standard user subroutine can be used to perform various tasks that requires the assembly of the results
over the complete finite element mesh or over the part of the mesh. The detailed description with examples is given in

User Defined Tasks.
argument Description Type
Task$$ Task to be executed: Integer
-n >
initialization of task with task identification keyword taskID
where n is position of faskID within the vector of character
type element switches, thus es$3["CharSwitch",n)==taskID
n = execute task that corresponds
to task es$3["CharSwitch" ,n]==taskID
TasksData$$[5] TasksData$$[1] = task type (see table below) Real
TasksData$$[2] = the length of the IntegerInput$$ vector
TasksData$$[3] = the length of the Reallnput$$ vector
TasksData$$[4] = the length of the IntegerOutput$$ vector
TasksData$$[5] = the length of the RealOutput$$ vector
IntegerInput$$[TasksData$$[2]] | integer input vector (the same for all elements) Integer
Reallnput$$[TasksData$$[3]] real input vector (the same for all elements) Real
IntegerOutput$$[integer output vector Integer
TasksData$$[4]] (the values returned from all selected elements
are further processed accordingly to the
options given to SMTTask command)
RealOutput$$[TasksData$$[5]] | real output vector Real

(the values returned from all selected elements are
further processed accordingly to the options
given to SMTTask command)

Additional arguments of the "Tasks™ subroufine.

140

AceGen code generator

task task description
type

active output parameters

1 given integer and real output vectors
are evaluated and optionally summarized
(see SMTTask command) for selected elements

2 the tasks expects the values of the

continuous field to be given for all element

nodes and stored in the RealOutput$$ vector

(the defined continuous field can then be smoothed

and extrapolated to the given spatial point, etc.. ,
depending on the options given to the SMTTask command)

3 the tasks expects the values of the continuous

field to be given for all element integration

points and stored in the RealOutput$$ vector

(the defined continuous field can then be smoothed,
extrapolated to the given spatial point, etc.. ,

depending on the options given to the SMTTask command)

4 given local element vectors are assembled
accordingly to the standard finite element assembly
procedure and given integer and real output
vectors are summarized for selected elements

5 given local element matrices are assembled
accordingly to the standard finite element assembly
procedure and given integer and real output
vectors are summarized for selected elements

6 types 5 and 6 combined

IntegerOutput$$,RealOutput$$

RealOutput$$

RealOutput$$

IntegerOutput$$ RealOutput$$,p$$

IntegerOutput$$,RealOutput$$,s$$

IntegerOutput$$,RealOutput$$. pS.s$$

ypes of the tasks to be performed.
This outlines the major parts of the "Tasks" user subroutine.
Initialization
The SMSCharSwitch constant holds the identifications of the tasks.

SMSTemplate[
«; "SMSCharSwitch" -

{"TaskTypel", "TaskType2", "TaskType3", "TaskType4", "TaskType5", "TaskType6"}, ..

1

SMSStandardModule["Tasks"];
task £ SMSInteger [Task$$];

Task type 1

Initialization and execution of the type 1 task with the task identification "TaskTypel" that will return 1 integer and 3

real values.

AceGen code generator 141

SMSIf[task == -1, SMSExport[{1, O, O, 1, 3}, TasksData$$]; SMSReturn[];];
SMSIf[task ==
, SMSExport[{ival}, IntegerOutput$$];
SMSExport[{rvall, rval2, rval3}, RealOutput$$];
1:

Task type 2

Initialization and execution of the type 2 task with the task identification "TaskType2" that will return SMTNoNodes
real type values

SMSIf[task == -2, SMSExport[{2, 0, 0, O, SMSNoNodes}, TasksData$$]; SMSReturn[];];
SMSIf[task ==
, SMSExport[{val,, val,, .., valguymonodes} s, RealOutputs];

1i
Task type 3

Initialization and execution of the type 3 task with the task identification "TaskType3" that will return the number of
integration points real type values

SMSIf[task == -3, SMSExport [
{3, 0, 0, 0, SMSInteger[es$$["id", "NoIntPoints"]]}, TasksData$$]; SMSReturn[];];
SMSIf[task ==
, SMSExport|[{val,, val,, .., valgointproints } » RealOutputs];
1:

Task type 4

Initialization and execution of the type 4 task with the task identification "TaskType4" that will set the local element
vector p$$. The local element vectors are assembled to form a global vector that is result of the SMTTask["-
TaskType4"] command.

SMSIf[task == -4, SMSExport[{4, 0, O, O, O}, TasksData$$]; SMSReturn[];];
SMSIf[task ==
’ SMSExPort [{Va12 ’ ValZ s ValSM’INoDofGlobal} 4 P$$] i

1i
Task type 5

Initialization and execution of the type 5 task with the task identification "TaskTypeS5" that will set the local element
matrix s$$. The local element matrices are assembled to form a global matrix that is result of the SMTTask["-
TaskType5"] command.

SMSIf[task == -5, SMSExport[{5, 0, 0, O, O}, TasksData$$]; SMSReturn[];];
SMSIf[task =5
; SMSExport [localmatrixXsuyrnoposelobal , sMTNoDofGlobal r SS$S] 7

1i
Task type 6

Initialization and execution of the type 6 task with the task identification "TaskType6" that will set the local element
matrix s$$ and the local element vector p$$. The local quantities are assembled to form a global quantities that are
result of the SMTTask["TaskType6"] command.

142 AceGen code generator

SMSIf[task == -6, SMSExport[{6, 0, O, O, 0}, TasksData$$]; SMSReturn[];];
SMSIf [task ==

; SMSExport[{val,, valy, .., valsurnopofclobal}s P$S];

SMSExport [localmatriXgyryopofclobal, SMTNoDofGlobal 7 S$$] 7

1;

Data structures

Environment data structure defines the general information common for all nodes and elements of the problem. If the
"default form" of the data is used, then AceGen automatically transforms the input into the form that is correct for the
selected FE environment. The environment data are stored into two vectors, one for the integer type values (Integer
Type Environment Data) and the other for the real type values (Real Type Environment Data). All the environments do
not provide all the data, thus automatic translation mechanism can sometimes fails. All data can be in general divided
into 6 data structures:

Integer Type Environment Data (in AceGen idata$$ in AceFEM
SMTIData)

Real Type Environment Data(in AceGen rdata$$,in AceFEM SMTRData)
Domain Specification Data (in AceGen es$$.in AceFEM SMTDomainData)
Element Data (in AceGen ed$$.in AceFEM SMTElementData)
Node Specification Data (in AceGen ns$$,in AceFEM SMTNodeSpecData)

Node Data (in AceGen nd$$.,in AccFEM SMTNodeData)

m Node Data Structures

Two types of the node specific data structures are defined. The structure (Node Specification Data , ns$$) defines the
major characteristics of the nodes sharing the same node identification (NodeID, Node Identification). Nodal data
structure (Node Data , nd$$) contains all the data that are associated with specific node. Nodal data structure can be set
and accessed from the element code. For example, the command SMSReal[nd$$[i,"X",1]] returns x-coordinate of the i-
th element node. At the analysis phase the data can be set and accessed interactively from the Mathematica by the user
(see SMTNodeData , SMTElementData ...). The data are always valid for the current element that has been processed
by the FE environment. Index i is the index of the node accordingly to the definition of the particular element.

m Element Data Structures

Two types of the element specific data structures are defined. The domain specification data structure (Domain Specifi-
cation Data , es$$) defines the major characteristics of the element that is used to discretize particular sub-domain of
the problem. It can also contain the data that are common for all elements of the domain (e.g. material constants). The
element data structure (Element Data , ed$$) holds the data that are specific for each element in the mesh.

For a transient problems several sets of element dependent transient variables have to be stored. Typically there can be
two sets: the current (hf) and the previous (hp) values of the transient variables. The hp and ht data are switched at the
beginning of a new step (see SMTNextStep).

All element data structures can be set and accessed from the element code. For example, the command SMSInte-
ger[ed$3["nodes",1]] returns the index of the first element node. The data is always valid for the current element that
has been processed by the FE environment.

Integer Type Environment Data

m General data

AceGen code generator 143
Default form Description Default/
Read —
Write
idata$$["IDatalength"] actual length of idata vector 200/R
idata$$["RDatal.ength"] actual length of rdata vector 200/R
idata$$["IDatalast"] index of the last value reserved on idata vector 7/R
(we can store additional user defined data after this point)
idata$$["RDataLast"] index of the last value reserved on rdata vector 7R
(we can store additional user defined data after this point)
idata$$["LastIntCode"] last integration code for which numerical 7/R
integration points and weights were calculated
idata$$["OutputFile"] output file number or output channel number 7R
idata$$["SymmetricTangent"] 1 = global tangent matrix is symmetric 2R
0 = global tangent matrix is unsymmetrical
idata$$["MinNoTmpData"] minimum number of real type 3
variables per node stored temporarily
(actual number of additional temporary variables per node is
calculated as Max["MinNoTmpData", number of nodal d.o.f])
idata$$["Task"] code of the current task performed 7R
idata$$["CurrentElement"] index of the current element processed 0/R
idata$$[" TmpContents"] the meaning of the temporary real type 0
variables stored during the execution of a single
analysis into nd$$[i,"tmp", j] data structure
0 = not used
1 = residual (reactions)
2 = used for postprocessing
idata$$[0 = residual vector is not formed separately 0
"AssemblyNodeResidual"] 1 = during the execution of the SMTNewtonlteration command
the residual vector is formed separately and stored into
nd$$[i,"tmp", j] (at the end the nd$$[i,"tmp", j] contains the j—
th component of the nodal reaction in the i—th node)
idata$$["Debug"] 1 = prevent closing of the CDriver console on exit 0/RW
idata$$["DataMemory"] memory used to store data (bytes) 0
idata$$[Used for buckling analysis (Ko+A K,) {¥}={0}): 0
"GeometricTangentMatrix"] 0 = form full nonlinear matrix
1 = form K,
2 = form K-
3 = form Ky+K,
idata$$["ExtrapolationType"] type of extrapolation of integration point values to nodes 0/RW
0 = least square extrapolation ()
1= integration point value is multiplied by the
user defined weight factors (see SMSStandardModule)
idata$$["NoThreads"] number of processors that are available for the parallel execution All
available

144 AceGen code generator

m Mesh input related data

AceGen code generator 145
Default form Description Default/
Read—
Write
idata$$["NoNodes"] total number of nodes /R
idata$$["NoElements"] total number of elements 7/R
idata$$["NoESpec"] total number of domains 7/R
idata$$["NoDimensions"] number of spatial dimensions of the problem (2 or 3) /R
idata$$["NoNSpec"] total number of node specifications /R
idata$$["NoEquations"] total number of global equations 7R
idata$$["DummyNodes"] 1 = dummy nodes are supported for the current analysis 0
idata$$["NoMultipliers"] number of boundary conditions multipliers 1

m Iterative procedure related data

See: Iterative solution procedure , SMTConvergence , SMTStatusReport , SMTErrorCheck

146

AceGen code generator

idata$$["Iteration"]
idata$$[" Totallteration"]
idata$$["Step"]

idata$$["LinearEstimate"]

idata$$["Postlteration"]

idata$$["PostlterationCall"]

idata$$["SkipTangent"]
idata$$["SkipResidual"]
idata$$["NoSublterations"]

idata$$["SublterationMode"]

idata$$["GloballterationMode"]

idata$$["MaxPhysicalState"]

idata$$["LineSearchUpdate"]

idata$$["NoBackStep"]

index of the current iteration within the iterative loop

total number of iterations in session

total number of completed solution steps
(set by Newton—Raphson iterative procedure)

if 1 then in the first iteration of the NewtonRaphson iterative
procedure the prescribed boundary conditions are not updated
and the residual is evaluated by R=R (ap)+K (ap)+Aaprescribed

is set by the SMTConvergence

command to 1 if idata$$["PostlterationCall"]=
1 or the SMTConvergence has been called
with switch "Postlteration" —>True

1 = additional call of the SKR user subroutines after the
convergence of the global solution is enabled in at least
one of the elements ("SMSPostlterationCall"—>True)

1 = the global tangent matrix is not assemled

1 = the global residual vector is not assembled

maximal number of local sub—
iterative process iterations performed during the analysis

Switch used in the case that alternating solution

has been detected by the SMTConvergence function.
0 = i1 bj=bP

=1 > i+1bB=ibt

Switch used in the case that alternating solution

has been detected by the SMTConvergence function.
0 = no restrictions on global equations

=1 = freeze all "If" statements

(e.g. nodes in contact, plastic—elastic regime)

used for the indication of the physical state of the element
(e.g. O—elastic, 1—plastic, etc., user controlled option)

activate line search procedure
(see also idata$$["LineSearchStepLength"])

number of failed iterative solution steps

R
2R

0/RW

0/R

0/RW

False

m Debugging and errors related data

See: Iterative solution procedure , SMTConvergence , SMTStatusReport , SMTErrorCheck

AceGen code generator 147
idata$$["ErrorStatus"] code for the type of the most important error event 0/RW
idata$$["SubDivergence"] number of the "Divergence of the local sub—iterative process" 0/RW
error events detected form the last error check

idata$$["ErrorElement"] last element where error event occurred 0

idata$$["NoDiscreteEvents"] number of discrete events recordered during the NR— 0
iteration by the elements (e.g. new contact node,
transformation from elastic to plastic regime)

idata$$["MaterialState"] number of the "Non—physical material point state" 0/RW
error events detected form the last error check

idata$$["ElementShape"] number of the "Non—physical element shape" 0/RW
error events detected form the last error check

idata$$["MissingSubroutine"] number of the "Missing user defined subroutine" 0/RW
error events detected form the last error check

idata$$["ElementState" | number of the "Non—physical element state" 0/RW
error events detected form the last error check

idata$$["DebugElement"] —1 = break points (see Interactive Debugging) and control 0
print outs (see SMSPrint) are active for all elements
0 = break points and control print outs are disabled
>0 = break points and control print outs are active only for
the element with the index SMTIData["DebugElement"]

m Linear solver related data

idata$$["SkipSolver"] 0 = full Newton—Raphson iteration 0
1 = the tangent matrix and the residual vector are
assembled but the resulting sistem of equations is not solved

idata$$["SetSolver"] 1 = recalculate solver dependent data structures if needed 0

idata$$["SolverMemory"] memory used by solver (bytes)

idata$$["Solver"] solver identification number

idata$$["Solver1"] solver specific parameters

idata$$["Solver2"]

idata$$["Solver3"]

idata$$["Solver4"]

idata$$["Solver5"]

idata$$["ZeroPivots"] number of near—zero pivots (see also SMTSetSolver) 0

idata$$["NegativePivots"] number of negative pivots (or —1 if data is not available), 0
(see also SMTSetSolver)

idata$$["NoLinearConstraints"] | number of linear constraint equations 0

148 AceGen code generator

m Sensitivity related data

idata$$["NoSensParameters"] total number of sensitivity parameters /R
(see "Sensitivity pseudo—load")

idata$$["SensIndex"] index of the current sensitivity parameter — globally to 7R
the problem (see "Sensitivity pseudo-load")

idata$$["NoBCParameters"] number of bounday conditions sensitivity parameters 0

idata$$["NoShapeParameters"] | total number of shape sensitivity parameters

m Contact related data

idata$$["ContactProblem"] 1 = global contact search is enabled 1/R
0 = global contact search is disabled

idata$$["Contact1"] contact problem specific parameters
idata$$["Contact2"]
idata$$["Contact3"]
idata$$["Contact4"]
idata$$["Contact5"]

nieger type environment data.

AceGen code generator 149
m All data structures
Real Type Environment Data
Default form Description Default
rdata$$["Multiplier"] current values of the natural and essential 0
boundary conditions are obtained by multiplying
initial values with the rdata$$["Multiplier"]
(the value is also known as load level or load factor)
rdata$$["ResidualError"] Modified Euklid' s norm of the residual vector [ﬁfﬁom 10
rdata$$["IncrementError"] Modified Euklid's norm of the 107
. Aa.Aa
last increment of global d.o.f _| ‘NoBaquations
rdata$$["MFlops"] estimate of the number of floating point operations per second
rdata$$["SubMFlops"] number of equivalent floating point
operations for the last call of the user subroutine
rdataS["Time"] real time 0
rdata$$["Timelncrement"] value of the last real time increment
rdata$$["MultiplierIncrement"] | value of the last multiplier increment 0
rdata$$[tolerance for the local sub—iterative process 107°
"SublterationTolerance"]
rdata$$[step size control factor n (rat=at+tn A ia) Automatic
"LineSearchStepLength"] (see also idata$$["LineSearchUpdate"])
rdata$$["PostMaxValue"] the value is set by the postprocessing SMTPost 0
function to the true maximum value of the required
quontitie (note that the values returned by the SMTPost
function are smoothed over the patch of elements)
rdata$$["PostMinValue"] the value is set by the postprocessing SMTPost function 0
to the true minimum value of the required quantity
rdata$$["Solverl"] solver specific parameters
rdata$$["Solver2"]
rdata$$["Solver3"]
rdata$$["Solver4"]
rdata$$["Solver5"]
rdata$$["Contact1"] contact problem specific parameters
rdata$$["Contact2"]
rdata$$["Contact3"]
rdata$$["Contact4"]
rdata$$["Contact5"]

eal type environment data.

150

AceGen code generator

Node Specification Data

Default form Description Dimension
ns$$[i,"id","SpecIndex"] | global index of the i —th node specification data structure 1
ns$$[i,"id","NoDOF"] number of nodal d.o.f (= nd$$[i,"id","NoDOF"]) 1
ns$$[i,"id", total number of history dependent real 1
"NoNodeStorage"] type values per node that have to be stored

in the memory for transient type of problems
ns$$[i,"id", total number of arbitrary real values per node 1
"NoNodeData"]
ns$$[i,"id","NoData"] total number of arbitrary real values per node specification 1
ns$$[i,"id", number of temporary real type variables stored 1
"NoTmpData"] during the execution of a single analysis directive

(max (SMTIData["MinNoTmpData"],NoDOF))
ns$$[i,"id","Constrained"] | 1 = node has initially all d.o.f. constrained 1
ns$$[i,"id","Fictive"] 1 = The node does not represent a topological point. The 1

switch is set automatically for the nodes with the —

D and —P node identification switch.
ns$$[i,"id","Dummy"] 1 = node specification describes a dummy node 1
ns$$[i,"id", index of the dummy node 1
"DummyNode"]
ns$$[i,"Data", j] arbitrary node specification specific data ns$$[i,

"id","NoData"]
real numbers

ns$5[i,"NodelD"] node identification (see Node Identification) string

ode specification data structure.

AceGen code generator

151

Node Data

post—processing data where nd$$[i,"ppd",1] is the sum of all
weights and nd$$[i,"ppd".,2] is smoothed nodal value
= nd$$[i,"tmp"]

Default form Description Dimension
nd$$[i,"id","Nodelndex"] | global index of the i —th node 1
nd$$[i,"id","NoDOF"] number of nodal d.o.f 1
nd$$[i,"id","SpecIndex"] |index of the node specification data structure 1
nd$$[i,"id", number of elements associated with i —th node 1
"NoElements"]
nd$$[i,"DOF", j] global index of the j —th nodal d.o.f or —1 if there is an NoDOF
essential boundary condition assigned to the j —th d.o.f.
nd$$[i,"Elements"] list of elements associated with i —th node NoElements
ndS[i,"X", j] initial coordinates of the node 3(1-X.2-Y3-7)
nd$$[i,"at", j] current value of the j—th nodal d.o.f (a;') NoDOF
nd$$[i,"ap", j] value of thej —th nodal d.o f at the end of previous step (a;P) NoDOF
nd$$[i,"da", j] value of the increment of the j NoDOF
—th nodal d.o.f in last iteration (Aa;)
nd$$[i,"Bt", j] nd$$[i,"DOF" jl = -1 = NoDOF
current value of the j —th essential boundary condition
nd$3[i,"DOF",j] =0 =
current value of the j—th natural boundary condition
nd$$[i,"Bp", jl value of the j —th boundary condition NoDOF
(either essential or natural) at the end of previous step
nd$$[i,"dB" j] reference value of the j —th boundary condition in node i NoDOF
(current boundary value is defined as Bt=Bp+AA dB,
where AA is the multiplier increment)
nd$$[i,"Data"j] arbitrary node specific data (e.g. initial NoNodeData
sensitivity in the case of shape sensitivity analysis) real numbers
nd$$[i,"ht",j] current state of the j NoNodeStorage
—th transient specific variable in the i—th node real numbers
nd$$[i,"hp" j] the state of the j —th transient variable in the i NoNodeStorage
—th node at the end of the previous step real numbers
nd$$[i,"tmp", j] temporary real type variables stored during the Max|[idata$$[
execution of a single analysis directive (restricted use) "MinNoTmpData"],
NoDOF])
nd$$[i,"ppd"] 2

odal data structure.

152

AceGen code generator

th shape sensitivity parameter
= nd$$[i,"Data" NoNodeData+SMSNoDimensions#(j—1)+k]

nd$$[i,"sBt", j k| current sensitivity of the k—

th dof of the i —th node with respect to the j—
th boundary sensitivity parameter

= nd$$[i,"Bt" NoDOF+NoDOF:(j—1)+k]

nd$$[i,"sBp", j kI sensitivity of the k—th dof of the i
—th node with respect to the j—

th boundary sensitivity parameter at the end of previous step
= nd$$[i,"Bp" NoDOF+NoDOF:(j—1)+k]

nd$$[i,"sdB", j k] reference value of the sensitivity of the jk—

th dof of the i —th node with respect to the j—
th boundary sensitivity parameter

= nd$$[i,"dB" NoDOF+NoDOF:(j—1)+k]
(current sensitivity value is defined as
sBt=sBp+AA sdB,

where AA is the multiplier increment)

Default form Description Dimension
nd$$[i,"st", j, k] current sensitivities of the k— NoDOF:
th nodal d.o.f with respect to the j— NoSensParameters
th sensitivity parameter (31“)
yp 90
nd$$[i,"sp", j, k] sensitivities of the k—th nodal d.o.f with respect to the j— NoDOF:
th sensitivity parameter in previous step (%:‘) NoSensParameters
J
nd$$[i, "sX", j, k] initial sensitivity of the k— SMSNoDimensionss
th nodal coordinate of the i —th node with respect to the j— NoShapeParameters

real numbers

NoDOF:
NoBCParameters

NoDOFs
NoBCParameters

NoDOF:
NoBCParameters

odal data related to sensitivity analysis.

Domain Specification Data

m Memory allocation (element, node, domain and global level)

AceGen code generator

153

Default form

Description

Type

es$$["id","NoTimeStorage"]

es$$["id","NoElementData"]

es$$["id", "NolData"]

es$$["IDataNames",i]

es$$["IDatalndex" i

es$$["id", "NoRData"]

es$$["RDataNames",i]

es$$["RDatalndex" 7]

es$$["id","NoCharSwitch"]

es$$["CharSwitch" i

es$$["id","NolntSwitch"]

es$$["IntSwitch",i]

es$$["id","NoDoubleSwitch"]
es$$["DoubleSwitch"]

es$$["NoNodeStorage", i]

es$$["NoNodeData", i

total length of the vector of history
dependent variables per element (element level)

total length of vector of history
independent variables per element (element level)

number of additional integer
type environment variables (global level)

name of the i—
th additional integer type environment data variable (the
corresponding value can be accessed by idata$$[name])

position of the i—th additional integer type
environment data variable on the idata$$ vector

number of additional real type
environment variables (global level)

name of the i—
th additional real type environment data variable (the
corresponding value can be accessed by rdata$$[name])

position of the i—th additional real type

environment data variable on the rdata$$ vector

number of character type
user defined constants (domain level)

i—th character type user defined constant

number of integer type user
defined constants (domain level)

i—th integer type user defined constant

number of real type user defined constants (domain level)

i—th real type user defined constant

total length of the vector of history dependent
real variables for the i —th node (node level)

total length of the vector of arbitrary real values for the i
—th node (node level)

integer expression

integer expression

integer

NolDataxstring

NolDataxinteger

integer

NoRDataxstring

NoRDataxinteger

NoCharSwitchx*
word

NolntegerSwitchs
integer
0

NoDoubleSwitch:
doube

NoNodes
integer numbers

NoNodes
integer numbers

m General Data

154

AceGen code generator

Default form Description Type
es$$["Code"] element code according to the general classification string
es$$["id","SpecIndex"] global index of the domain specification structure integer
es$$["id","NoDimensions"] number of spatial dimensions (1/2/3) integer
es$$["Topology"] element topology code (see Template Constants) string
es$$["MainTitle"] description of the element string
es$$["SubTitle"] description of the element string
es$$["SubSubTitle"] detailed description of the element string
es$$["Bibliography"] reference string
es$$["id", 1 = element tangent matrix is symmetric integer
"SymmetricTangent"] 0 = element tangent matrix is unsymmetrical
es$$["id","PostlterationCall"] [force an additional call of the SKR user subroutines False
after the convergence of the global solution is achieved
es$$["id","NoDOFGlobal"] total number of global d.o.f per element integer
es$$["DOFGlobal", i] number of d.o.f for the i NoNodesx
—th node (each node can have different number of d.o.f) integer
es$$["id","NoDOFCondense"] | number of d.o.f that have to be statically condensed integer
before the element quantities are assembled to
global quantities (see also Template Constants)
es$$["user", 7] the i —th user defined element subroutines link
(interpretation depends on the FE environment)
es$$["MMAlnitialisation"] Mathematica's code executed string
after SMTAnalysis command
es$$["MMANextStep"] Mathematica's code executed string
after SMTNextStep command
es$$["MMAStepBack"] Mathematica's code executed string
after SMTStepBack command
es$$["MMAPrelteration"] Mathematica's code executed string
before SMTNextStep command

AceGen code generator

m Mesh generation

es$$["id","NoNodes"]
es$$["NodeSpec" /]

es$$["NodelD" i]

es$$[" AdditionalNodes"]

number of nodes per element

node specification index for the i —th node

integer number that is used for identification of the
nodes in the case of multi—field problems for all nodes

pure function (see Function) that returns coordinates

of nodes additional to the user defined nodes that are
nodes required by the element (if node is a dummy node
than coordinates are replaced by the symbol Null)

integer

NoNodes
integer numbers

NoNodes:
integer numbers

pure function

es$$["id", enable use of dummy nodes False
"CreateDummyNodes"]
m Domain input data
es$$["id","NoGroupData"] number of input data values that are common integer
for all elements in domain (e.g material constants)
and are provided by the user is input data
es$$["GroupDataNames", i description of the i —th input data value that is NoGroupDatax
common for all elements with the same specification string
es$$["Data" j] data common for all the elements NoGroupData

€S$$ [uidu ,
"NoAdditionalData"]

es$$["AdditionalData" i]

within a particular domain (fixed length)

number of additional input data values that are common
for all elements in domain (e.g flow curve points) and
are provided by the user is input data (variable length)

additional data common for all the elements
within a particular domain (variable length)

real numbers

integer expression

NoAdditionalData
real numbers

m Numerical integration

156

AceGen code generator

Default form Description Type

es$$["id","IntCode"] integration code according to the general integer
classification (see Numerical Integration)

es$$["id", default numerical integration integer

"DefaultIntegrationCode"] code (Numerical Integration). Value
is initialized by template constant
SMSDefaultIntegrationCode (see Template Constants).

es$$["id","NolIntPoints"] total number of integration points for integer
numerical integration (see Numerical Integration)

es$$["id","NolntPointsA"] number of integration points for first integer
integration code (see Numerical Integration)

es$$["id","NolntPointsB"] number of integration points for second integer
integration code (see Numerical Integration)

es$$["id","NolIntPointsC"] number of integration points for third integer
integration code (see Numerical Integration)

es$$["IntPoints" i, j] coordinates and weights NolntPointss4
of the numerical integration points real numbers
&=es$$["IntPoints",1.i], n;=es$$["IntPoints" 2.i],
;=es$$["IntPoints",3,i], w;=es$$["IntPoints" 4,i]

AceGen code generator

157

m Graphics postprocessing

es$$["id","NoGPostData"]

es$$["id","NoNPostData"]

es$$["GPostNames", i]

es$$["NPostNames", i]

es$$["Segments", i]

es$$["id","NoSegmentPoints" |
es$$["ReferenceNodes" ,i]

es$$["PostNodeWeights" i

es$$["AdditionalGraphics"]

number of post—processing quantities per
material point (see Standard user subroutines)

number of post—processing quantities
per node (see Standard user subroutines)

description of the i
—th post—processing quantities evaluated at each
material point (see Standard user subroutines)

description of the i
—th post—processing quantities evaluated at
each nodal point (see Standard user subroutines)

sequence of element node indices that

defines the segments on the surface or outline of
the element (e.g. for "QI" topology {1,2,3,4,0})
the length of the es$3["Segments"] field

coordinates of the nodes in a reference
coordinate system (reference coordinate
system is specified by the integration code)

see SMTPost

pure function (see Function) that is called
for each element and returns additional graphics
primitives per element (see Template Constants)

integer

integer

NoGPostDatax
string

NoNPostDatax
string

NoSegmentPoints
Xinteger

integer

NoNodesx3
real numbers

NoNodes
real numbers

string

m Sensitivity analysis

AceGen code generator

Default form Description Type

es$$["id","NoSensNames"] number of quantities for which parameter integer
sensitivity pseudo—load code is derived

es$$["SensitivityNames" i description of the quantities for which NoSensNamess
parameter sensitivity pseudo—load code is derived string

es$$["SensType", i] type of the i— NoSensParameters

es$$["SensTypelndex", i]

th sensitivity parameter (see Standard user subroutines)

index of the i —th parameter defined locally
in a type group (see Standard user subroutines)

integer numbers

NoSensParameters
integer numbers

ed$$["Data",j]

ed$$["ht",j]

ed$$[nhpu ’J]

es$$["id","ShapeSensitivity"] | 1 = shape sensitivity pseudo—load code is present integer
0 = shape sensitivity is not enabled
Element Data
Default form Description Type
ed$$["id","ElemIndex"] global index of the element integer
ed$$["id","SpecIndex"] index of the domain specification data structure integer
ed$$["id"," Active"] 1 = element is active integer
0 = element is ignored for all actions
ed$$["Nodes",j] index of the j —th element nodes NoNodes

arbitrary element specific data

current state of the j —th transient element specific variable

the state of the j
—th transient variable at the end of the previous step

integer numbers

NoElementData
real numbers

NoTimeStorage
real numbers

NoTimeStorage
real numbers

fement data structure.

AceGen code generator

159

Interactions Templates-AceGen-AceFEM

m Glossary

This chapter explains the relations among the general template constants (SMSTemplate) , the input-output parameters
of generated user subroutines (Symbolic-Numeric Interface) and the AceFEM environment data manipulation routines.

symbol description symbol description

N positive integer number "ab" arbitrary string

eN integer type expression "K" keyword

R real number TF True / False

i,] index e element number

n node number — "dID" domain identification
within the element

m node number — f& pure function (see Function)
within the global mesh

m Element Topology

Template Constant

AceGen external variable

AceFEM data

"SMSTopology"—>"K"
"SMSNoDimensions"—>N
"SMSNoNodes"—>N

"SMSDOFGlobal"->{N,...}

"SMSNoDOFCondense"—>N

"SMSCondensationData"—>
{N,N,N}

es$$["Topology"]
es$$["id","NoDimensions"]

esS["id","NoNodes"]
ed$$["Nodes" i]

es$$["DOFGlobal" i
nd$$[n,"id","NoDOF"]
es$$["id","NoDOFGlobal"]
es$$["id","MaxNoDOFNode"]
es$$["id","NoAIIDOF"]

es$$["id","NoDOFCondense"]

SMTDomainData["dID","Topology"]
SMTDomainData["dID","NoDimensions"]

SMTDomainData["dID","NoNodes"]
SMTElementDatale,"Nodes"]

SMTDomainData["dID","DOFGlobal"]
SMTNodeData[m,"NoDOF"]
SMTDomainData["dID","NoDOFGlobal"]
SMTDomainData[
"dID","MaxNoDOFNode"]
SMTDomainData["dID","NoAlIDOF"]

SMTDomainData[
"dID","NoDOFCondense"]

Template Constant

| AceGen external variable

AceFEM data

"SMSAdditionalNodes"— f &
"SMSNodeID"—>{"K" ...}

"SMSCreateDummyNodes"—>
TF

es$$["NodelD",i]

CS$$["id" ,
"CreateDummyNodes"]

SMTDomainData["dID","NodeID"]

SMTDomainData[
"dID","CreateDummyNodes"]

Automatic mesh generation.

AceGen code generator

m Memory Management

Template Constant

AceGen external variables

AceFEM data

"SMSNoTimeStorage"—>eN

"SMSNoElementData"—>eN

"SMSNoNodeStorage"—>eN

es$$["id","NoTimeStorage"]
ed$$["ht" i]
edS["hp"]

es$$["id","NoElementData"]
ed$$["Data" i]

es$$["id","NoNodeStorage"]
nd$$[n ,"ht" ,l]
nd$$[n ,"hp " ,l]

SMTDomainData[
"dID","NoTimeStorage"]
SMTElementDatale,"ht" i]
SMTElementDatale,"hp",i]

SMTDomainData[
"dID","NoElementData"]
SMTElementDatale,"Data" i]

SMTDomainData[
"dID","NoElementData" |
SMTNodeData[n,"ht" ,i]

SMTNodeData[n,"hp" ,i]

SMTDomainData["dID","NoNodeData"]
SMTNodeData[n,"Data",i]

SMTDomainData["dID","NolIData"]
SMTDomainData["dID","IDataNames" |
SMTIData["K"]

"SMSNoNodeData"—->eN es$$["id","NoNodeData"]

nd$$[n,"Data" i

es$$["id", "NolData"]
es$$["IDataNames" ,i]
es$$["IDatalndex" i]
idata$$["K"]

es$$["id", "NoRData"]
es$$["RDataNames" i
es$$["RDatalndex" i]
rdata$$["K"]

"SMSIDataNames"—>{"K" ...}

"SMSRDataNames"—>{"K" ...} SMTDomainData["dID","NoRData"]

SMTDomainData["dID","RDataNames"]
SMTRData["K"]

m Element Description

AceFEM data
SMTDomainData["dID","MainTitle"]
SMTDomainData["dID","SubTitle"]
SMTDomainData["dID","SubSubTitle"]
SMTDomainData["dID","Bibliography"]

AceGen external variable
es$$["MainTitle"]
es$$["SubTitle"]
es$$["SubSubTitle"]
es$$["Bibliography"]

Template Constant
"SMSMainTitle"—>"ab"
"SMSSubTitle"—>"ab"
"SMSSubSubTitle"—>"ab"
"SMSBibliography"—>"ab"

AceGen code generator

161

m Input Data

Template Constant

AceGen external variables

AceFEM data

"SMSGroupDataNames"—>
{"ab" ...}

"SMSNoAdditionalData"—>eN

"SMSCharSwitch"—>{"ab" ...}

"SMSIntSwitch"—>{i...}

"SMSDoubleSwitch"—>{i...}

es$$["id","NoGroupData"]
es$$["GroupDataNames",i]

es$$["id","NoAdditionalData"]
es$$[" AdditionalData",i]

es$$["id","NoCharSwitch"]
esS["CharSwitch"]

es$$["id","NoIntSwitch"]
esS["IntSwitch" 7]

es$$["id","NoDoubleSwitch"]
es$$["DoubleSwitch",i]

SMTDomainData["dID","NoGroupData"]
SMTDomainData[
"dID","GroupDataNames"]
SMTDomainData["dID","Data"]

SMTDomainData[
"dID","NoAdditionalData"]
SMTDomainData["dID"," AdditionalData"]

SMTDomainData["dID","NoCharSwitch"]
SMTDomainData["dID","CharSwitch"]

SMTDomainData["dID","NoIntSwitch"]
SMTDomainData["dID","IntSwitch"]

SMTDomainData[
"dID","NoDoubleSwitch"]
SMTDomainData["dID","DoubleSwitch"]

m Mathematica

Template Constant

AceGen external variables

AceFEM data

"SMSMM Alnitialisation"—>
n ab n

"SMSMMANextStep"—>"ab"
"SMSMMAStepBack"—>"ab"
"SMSMMA Prelteration"—>"ab"

"SMSMM Alnitialisation"—>
llabll

es$$["MMAlnitialisation"]

es$$["MMANextStep"]
es$$["MMAStepBack"]
es$$["MMAPrelteration"]

es$$["MMAlnitialisation"]

SMTDomainData[
"dID","MM Alnitialisation"]

SMTDomainData["dID","MMANextStep"]
SMTDomainData["dID","MMAStepBack"]

SMTDomainData[
"dID","MMAPrelteration"]

SMTDomainData[
"dID","MMAlnitialisation"]

162

AceGen code generator

m Presentation of Results

Template Constant

AceGen external variables

AceFEM data

"SMSGPostNames"—>{"ab" ...}

"SMSNPostNames"—>{"ab" ...}

"SMSSegments"—>{N...}

"SMSReferenceNodes"—>{N...}

"SMSPostNodeWeights"—>
{N...}

"SMSAdditionalGraphics"—>f&

es$$["id","NoGPostData"]
es$$["GPostNames",i]

es$$["id","NoNPostData"]
es$$["NPostNames" i

es$$["id","NoSegmentPoints"]
es$$["Segments", i]
es$$["ReferenceNodes" i

es$$["PostNodeWeights" ,i]

es$$["AdditionalGraphics"]

SMTDomainData["dID","NoGPostData"|
SMTDomainData["dID","GPostNames"]

SMTDomainData["dID","NoNPostData"]
SMTDomainData["dID","NPostNames"]

SMTDomainData[
"dID","NoSegmentPoints"]
SMTDomainData["dID","Segments"]

SMTDomainData|
"dID","ReferenceNodes"]

SMTDomainData[
"dID","PostNodeWeights"]

SMTDomainData[
"dID"," AdditionalGraphics"]

m General
Template Constant AceGen external variable AceFEM data
"SMSPostlterationCall"—>TF es$$["PostlterationCall"] SMTDomainData[
"dID","PostlterationCall"]
"SMSSymmetricTangent"—>TF [es$$["id","SymmetricTangent"] | SMTDomainData[

"SMSDefaultIntegrationCode"
->N

es$$["id",
"DefaultIntegrationCode"]
es$$["id","IntCode"]
es$$["id","NolntPoints"]
es$$["id","NolIntPointsA"]
es$$["id","NolntPointsB"]
es$$["id","NolntPointsC"]
es$$["IntPoints" i, f]

"dID","SymmetricTangent"]

SMTDomainData["dID",
"DefaultIntegrationCode"]
SMTDomainData["dID","IntCode"]
SMTDomainData["dID","NoIntPoints"]
SMTDomainData["dID","NoIntPointsA"]
SMTDomainData["dID","NoIntPointsB"]
SMTDomainData["dID","NoIntPointsC"]
SMTDomainData["dID","IntPoints"]

Options for numerical procedures.

Template Constant

AceGen external variable

AceFEM data

"SMSSensitivityNames"—>
{"ab" ...}

"SMSShapeSensitivity"—>TF

es$$["id","NoSensNames"]
es$$[" SensitivityNames" i
es$$["SensType", i]
es$$["SensTypelndex", i]

es$$["id","ShapeSensitivity"]

SMTDomainData["dID","NoSensNames"]
SMTDomainData[
"dID","SensitivityNames"]
SMTDomainData["dID","SensType"]
SMTDomainData["dID","SensTypelndex"]

SMTDomainData[
"dID","ShapeSensitivity"]

Sensitivity related data.

AceGen code generator 163

Template Constant | AceGen external variables AceFEM data
"SMSResidualSign"—->R - -
"SMSNodeOrder"—>{N...} - -
"SMSUserDataRules"—>rules B B

Compatibility related data.

User defined environment interface

Regenerate the heat conduaction element from chapter Standard FE Procedure for arbitrary user defined C based finite
element environment in a way that element description remains consistent for all environments.

Here the SMSStandardModule["Tangent and residual"] user subroutine is redefined for user environment. Mathematica has to be
restarted in order to get old definitions back !!!
<<AceGen";
SMSStandardModule["Tangent and residual"]:=
SMSModule["RKt",Real [D$$[2],X$$[2,2],U$$[2,2],10ad$$,KS[4,4],888(2]11];

Here the replacement rules are defined that transform standard input/output parameters to user defined input/output parameters.

datarules = {nd$$[i_, "X", j_]1 > X$$[1, j1,
nd$$[i_, "at", j_]1 = US$$[i, jl,
es$$["Data", i_] » DS[i],
s$$[i_, j_]1 »K$$[1i, jl,
pSS[i_] = S$$[i],
rdata$$["Multiplier"] -» load$$};

164 AceGen code generator

The element description remains essentially unchanged.

An additional subroutines (for initialization, dispatching of messages, etc..) can be added to the source code using the "Splice"
option of SMSWrite command. The "splice-file" is arbitrary text file that is first interpreted by the Mathematica’s Splice command
and then prepended to the automatically generated source code file.

SMSInitialize["UserEnvironment", "Environment" -> "User", "Language" -> "C"];
SMSTemplate["SMSTopology" -» "H1", "SMSDOFGlobal" - 1,
"SMSSymmetricTangent" - False, "SMSGroupDataNames" ->
{"Conductivity parameter kO", "Conductivity parameter k1",
"Conductivity parameter k2", "Heat source"}
, "SMSUserDataRules" - datarules];
SMSStandardModule["Tangent and residual"];
SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
&= {&, n, £} r Table[SMSReal [es$$["IntPoints", i, Ig]], {i, 3}];
XI + Table[SMSReal [ndS[i, "X", j1], {i, SMSNoNodes}, {j, SMSNoDimensions}];
Zn = {{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},
(-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}};
NIk Table[1l/8 (1+&=n[i, 1]) (1 +nEn[i, 2]) (L +Z=n[i, 3]), {i, 1, 8}];
X + SMSFreeze[NI.XI]; Jg k SMSD[X, E]; Jgd k Det[Jg];
¢I r SMSReal [Table[nd$$[i, "at", 1], {i, SMSNoNodes}]];
¢ ENI.QI;
{kO, k1, k2, O} + SMSReal [Table[es$$["Data", i], {i, Length[SMSGroupDataNames]}]];
k e kO + k1 ¢ + k2 ¢?;
SMSSetBreak["k"];
A SMSReal [rdata$$["Multiplier"]];
wgp + SMSReal [es$$["IntPoints", 4, Ig]];
SMSDo [
D¢ £ SMSD[¢, X, "Dependency"”" -> {E, X, SMSInverse[Jg]}];
5¢ £ SMSD[¢, ¢I, i];
Dé¢ £ SMSD[6¢, X, "Dependency"” -> {E, X, SMSInverse[Jg]}];
Rg £ Jgd wgp (k D6¢.D¢ - 5 A Q) ;
SMSExport [SMSResidualSign Rg, p$$[i], "AddIn" - True];
SMSDo [
Kg £ SMSD[Rg, ¢I, j];
SMSExport[Kg, s$$[i, j], "AddIn" -» True];
{3, 1, 8}
1i
, {1, 1, 8}
1i
SMSEndDo[];
SMSWrite[];

File: UserEnvironment.c Size: 6769

Methods No.Formulae No.Leafs
RKt 132 2616
Quit[];

AceFEM
About AceFEM

The AceFEM package is a general finite element environment designed for solving multi-physics and multi-field
problems. (see also AceFEM Structure)

AceGen code generator 165

Examples related to the automation of the Finite Element Method using AceFEM are part of AceFEM documentation
(see Summary of Examples).

FEAP

m About FEAP

FEAP is an FE environment developed by R. L. Tylor, Department of Civil Engineering, University of California at
Berkeley, Berkeley, California 94720.

FEAP is the research type FE environment with open architecture, but only basic pre/post-processing capabilities. The
generated user subroutines are connected with the FEAP through its standard user subroutine interface (see SMSStan-
dardModule). By default, the element with the number 10 is generated.

In order to put a new element in FEAP we need:

= FEAP libraries (refer to http://www .ce.berkeley.edu/~rlt/feap/)
= element source file.
> supplementary files (files can be find at directory $BaseDirectory/Applications/AceGen/Include/FEAP/).

Supplementary files are:

> SMS.h has to be available when we compile element source code

= SMSUtility.f contains supplementary routines for the evaluation of Gauss points, static condensation etc.
= sensitivity.h, UmacrO.f and uplot.f files contain FEAP extension for the sensitivity analysis,

= Umacr3.f contain FEAP extension for automatic exception and error handling.

Files has to be placed in an appropriate subdirectories of the FEAP project and included into the FEAP project.

The FEAP source codes of the elements presented in the examples section can be obtained by setting environment
option of SMSIntialize to "FEAP").

How to set paths to FEAP's Visual Studio project is described in http://www .fgg.uni-lj.si/symech/User/Acelnstalla-
tion.htm .

m Specific FEAP Interface Data

Additional template constants (see Template Constants) have to be specified in order to process the FEAP's "splice-
file" correctly.

Abbreviation | Description | Default

FEAPS$ElementNumber | element user subroutine number (elmt ??) | "10"

itional FEAP template constants.

Some of the standard interface data are interpreted in a FEAP specific form as follows.

166 AceGen code generator

Standard form Description FEAP interpretation
es$$["SensType", j] type of the j—th (current) sensitivity parameter idata$$["SensType"]
es$$["SensTypelndex", j] |index of the j—th (current) idata$$["SensTypelndex"]
sensitivity parameter within the type group
nd$$[i, "sX", j, k] initial sensitivity of the k— sxd$$[
tk nodal coordinate of the i (i—1) SMSNoDimensions+Kk]

—th node with respect to the j—
th shape sensitivity parameter

he FEAP specific interpretation of the standard interface data.

m FEAP extensions

FEAP has built-in command language. Additional commands are defined (see FEAP manual) for the tasks that are not
supported directly by the FEAP command languge .

Command Description
sens,set allocate working fields for all sensitivity parameters
sens,solv solve sensitivity problem for all parameters in for current time step
sens,disp display sensitivities for all parameters and all nodes
sens,disp,n display sensitivities for the n—th parameters and all nodes
sens,disp,n,m display sensitivities for the n—th parameter and the m—th node
sens,disp,n,mk display sensitivities for the n—th parameter and nodes m to k
plot,uplo,n,m.k plot the m—th component of the n—th sensitivity parameter

where k determines the number of contour lines and the type of contour

Additional FEAP macro commands for sensitivity calculations.

Command Description

chkc report error status to the screen and to the output file and clear all the error flags
chke, clea clear all the error flags and write report to the output file

chkce, clea, tag tag is an arbitrary number included in a report that can be used to locate the error

Additional FEAP macro commands for excepfion and error handling.

m Example: Mixed 3D Solid FE for FEAP

Regenerate the three-dimensional, eight node finite element described in AceFEM documentation (see Mixed 3D Solid
FE, Elimination of Local Unknowns) for FEAP environment.

AceGen code generator 167

Generation of element source code for FEAP environment

<< "AceGen™";
SMSInitialize["test", "Environment" -» "FEAP"];
SMSTemplate["SMSTopology" -» "H1",

"SMSSymmetricTangent" » True, "SMSNoDOFCondense" - 9

, "SMSGroupDataNames" -> {"E -elastic modulus", "v -poisson ratio",

"0x -volume load X", "Qy -volume load Y", "0z -volume load Z"}

, "SMSpDefaultData" -> {21000, 0.3, 0, O, O}];
SMSStandardModule["Tangent and residual"];
SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
=={&, n, £} + Table[SMSReal [es$$["IntPoints", i, Ig]l], {i, 3}];
XI + Table[SMSReal [nd$$[i, "X", j1], {i, SMSNoNodes}, {j, SMSNoDimensions}];
Zn = {{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},

(-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}};
NI Table[l/8 (1+&=n[[i, 1]) (L +n=n[i, 2]) (1 +&=n[i, 3]), {i, 1, 8}]1;
X r SMSFreeze[NI.XI]; Jg k SMSD[X, E]; Jgd k Det[Jg];
ul + SMSReal [Table[nd$$[i, "at", j], {i, SMSNoNodes}, {j, SMSNoDimensions}]];
pe = Flatten[uI]; uk NI.uI;
Dg k SMSD[u, X, "Dependency"” -» {&, X, SMSInverse[Jg]}];
JO £ SMSReplaceAll[Jg, {£>0, n >0, £ 0}]; JOd r Det[JO];
ae + Table[SMSReal [ed$$["ht", i]], {i, SMSNoDOFCondense}];
ph = Join[pe, ae];

§ae[[1] |nae[[2] | § ae[3] Jod
HbE = §ael[[4] |n ae[[5] | £ ae[[6] | |; Hb E HbE.SMSInverse[JO];
€ae[7] |nael8] |E ae[9] Jgd

F £ IdentityMatrix[3] + Dg + Hb; JF £ Det[F]; Cg F Transpose[F] .F; {Em, v, Ox, Qy, 0z} +
SMSReal [Table[es$$["Data", i], {i, Length[SMSGroupDataNames]}]];
{A, u} F SMSHookeToLame [Em, V] ;
Wel/2X (JF-1)"2+pu (1/2 (Tr[Cg] - 3) -Log[JF]) - {Qx, Qy, Qz}.u;
wgp + SMSReal [es$$["IntPoints", 4, Ig]];
SMSDo [Rg £ Jgd wgp SMSD[W, ph, i];
SMSExport [SMSResidualSign Rg, p$$[i], "AddIn" - True];
SMSDo [Kg £ SMSD[Rg, ph, j];
SMSExport[Kg, s$$[i, j], "AddIn" -» True];
, {j, i, SMSNoOAllDOF}];
, {i, 1, SMSNOA1llDOF}];
SMSEndDo[];
SMSWrite[];

Elimination of local unknowns requires additional
memory. Corresponding constants are set to:
SMSCondensationData= {ed$$[ht, 1], ed$$[ht, 10],
ed$$[ht, 19], eds[ht, 2357}
SMSNoTimeStorage=234 + 9 idata$$ [NoSensParameters]
See also: Elimination of local unknowns

File: test.f Size: 29124

Methods No.Formulae No.Leafs
SKR10 244 6902

168 AceGen code generator

Test example: FEAP

Here is the FEAP input data file for the test example from the chapter Mixed 3D Solid FE, Elimination of Local Unknowns. You
need to install FEAP environment in order to run the example.

feap
0,0,0,3,3,8

block
cart,6,15,6,1,1,1,10
1,10.,0.,0.
2,10.,2.,0.
3,0.,2.,0.
4,0.,0.,0.
5,10.,0.,2.
6,10.,2.,2.
7,0.,2.,3.
8,0.,0.,3.

ebou
1,0,1,1,1
1,10.,,,1

edisp,add
1,10.,,,-1.

mate, 1l
user, 10
1000,0.3

end

macr
tol,,le-9
prop, ., 1
dt,,1
loop,,5
time
loop,,10
tang,,1
next
disp,,340
next

end

stop

Here is the generated element compiled and linked into the FEAP's Visual Studio project. See http://www fgg.uni-lj.si/symech/Us-
er/Acelnstallation.htm for details. The SMSFEAPRun function then starts FEAP with a beam.inp file as a standard FEAP input file
and a beam.out file as output file.

SMSFEAPMake ["ExamplesHypersolidFEAP"]

SMSFEAPRun|["feap.inp"]

AceGen code generator 169

SWINNT system32' cmd.exe
JDElastoPlastic
EgquationProhblen Summa p» y:
Space dimension (ndm>» = 3 Mumher dof <ndf

Mumher of equations 2156 Mumbher nodes
Average col. height 288 Mumher elements

Mumber profile terms = 612255 Mumher material
Mumher rigid bodies 0] Mumbher Jjoints
Est. factor time—sec = 3.4927VE+88

ReadList["feap.out", "Record"][[-4]]

ELFEN

m About ELFEN

ELFEN® is commercial FE environment developed by Rockfield Software, The Innovation Centre, University of Wales
College Swansea, Singleton Park, Swansea, SA2 8PP, U K.

ELFEN is a general FE environment with the advanced pre and post-processing capabilities. The generated code is
linked with the ELFEN® through the user defined subroutines. By default the element with the number 2999 is gener-
ated. Interface for ELFEN® does not support elements with the internal degrees of freedom.

In order to put a new element in ELFEN® we need:

> ELFEN® libraries (refer to Rockfield Software),
= SMS.h and SMSUtility f files (available in $BaseDirectory/Applications/AceGen/Include/ELFEN/ directory),
= element source file.

Due to the non-standard way how the Newton-Raphson procedure is implemented in ELFEN, the ELFEN source codes
of the elements presented in the examples section can not be obtained directly. Insted of one "Tangent and residul" user
subroutine we have to generate two separate routines for the evaluation of the tangent matrix and the residual .

How to set paths to ELFEN's Visual Studio project is described in http://www fgg.uni-lj.si/symech/User/Acelnstalla-
tion.htm.

m Specific ELFEN Interface Data

Additional template constants (see Template Constants) have to be specified in order to process the ELFEN's "splice-
file" correctly. Default values for the constants are choosen accordingly to the element topology.

170 AceGen code generator

Abbreviation Description Default value
ELFENS$ElementModel "B2" = two dimensional beam elements "L1","LX"=>"B2"
"B3" = three dimensional beam elements "C1","CX"="B3"
"PS " > "T1","T2","TX","Q1",
two dimensional plane stress elements "Q2","QX"="PE"
"PE " = two dimensional "P1","P2","PX","S1",
plane strain elements "S2" "SX"="SH"
"D3" = three dimensional solid elements '01","02","OX","H1",
"AX" = axi—symmetric elements "H2","HX"="D3"

"PL" = plate elements
"ME" = membrane elements
"SH" = shell elements

ELFEN$NoStress number of stress components accordingly to

the SMSTopology
ELFEN$NoStrain number of strain components accordingly to

the SMSTopology
ELFENS$NoState number of state variables 0

Additional ELFEN constants.

Here the additional constants for the 2D, plane strain element are defined.

ELFENSElementModel = "PE";
ELFEN$NoState = 0;
ELFENSNoStress = 4;
ELFENSNoStrain = 4;

Some of the standard interface data are interpreted in a ELFEN specific form as follows.

Standard form Description FEAP interpretation
es$$["SensType", /] type of the j—th (current) sensitivity parameter idata$$["SensType"]
es$$["SensTypelndex", j] |index of the j—th (current) idata$$["SensTypelndex"]
sensitivity parameter within the type group
nd$$[i, "sX", j, k] initial sensitivity of the k— sxd$$[
tk nodal coordinate of the i (i—1) SMSNoDimensions+k]
—th node with respect to the j—
th shape sensitivity parameter

he ELFEN specific interpretation of the interface data.

AceGen code generator

171

m ELFEN Interface

group specific input data values

ngdata number of the element
group specific input data values

mstate dimension of the state data array

state description of the element state data values
nstate number of the element state data values
mgpost dimension of the integration

point postprocessing data array

gpost description of the integration
point postprocessing values

ngpost total number of the integration
point postprocessing values

ngspost number of sensitivity parameter dependent
integration point postprocessing values

mnpost dimension of the integration
point postprocessing data array

npost description of the integration
point postprocessing values

nnpost total number of the integration
point postprocessing values

nnspost number of sensitivity parameter dependent
integration point postprocessing values

Parameter Description type

mswitch dimensions of the integer switch data array integer mswitch
switch integer type switches integer switch (mswitch)
meuvbl dimensions of the element variables vlues array integer meuvbl
lesvbl array of the element variables vlues integer lesvbl (meuvbl)
nehist number of element dependent history variables integer nehist

Ifile output file (FORTRAN unit number) integer jfile
morder dimension of the node ordering array integer m order
order node ordering integer orde (morder)
mgdata dimension of the element group data array integer mgdata
gdata description of the element characters32 gdata (mgdata)

integer ngdata
integer mstate
character=32 state (mstate)
integer nstate
integer mgpost
character=«32 gpost (mgpost)
integer ngpost
integer ngspost
integer mgpost
character=32 npost (mnpost)

integer nnpost

integer nnspost

arameter [ist for the SMSInnn ELFEN nnnn'th user element subroutine.

Switch | Description type
1 number of gauss points output
2 number of sensitivity parameters input

172 AceGen code generator

m Example: 3D Solid FE for ELFEN

Regenerate the three-dimensional, eight node finite element described in AceFEM documentation (see Mixed 3D Solid
FE, Elimination of Local Unknowns) for ELFEN environment.

AceGen code generator 173

Generation of element source code for ELFEN environment

The AceGen input presented in previous example can be used again with the "Environment"—"ELFEN" option to produce Elfen's
source code file. However, due to the non-standard approach to the implementation of the Newton-Raphson loop in ELFEN result
would not be the most efficient. More efficient implementation is obtained if the evaluation of the tangent matrix and residual
vector are separated. The procedure is controlled by the values of environment constants "SkipTangent", "SkipResidual" and
"SublterationMode".

When the tangent matrix is required the variables are set to
idata$$["SkipTangent"]=0,

idata$$["SkipResidual"]=1,
idata$$["SublterationMode"]=1

and when the residual is required the variables are set to
idata$$["SkipTangent"]=1,

idata$$["SkipResidual"]=0,
idata$$["SublterationMode"]=0.

Additionally, the non-standard evaluation of the Newton-Raphson loop makes implementation of the mixed FE models difficult.
Thus only displacement element is generated.

The generated code is then incorporated into ELFEN.

<< "AceGen™";
SMSInitialize["test", "Environment" -» "ELFEN"];
SMSTemplate["SMSTopology" -» "H1", "SMSSymmetricTangent" - True

, "SMSGroupDataNames" -> {"E -elastic modulus", "v -poisson ratio",

"0x -volume load X", "Qy -volume load Y", "0z -volume load Z"}

, "SMSDefaultData" -> {21000, 0.3, 0, O, O}];
SMSStandardModule["Tangent and residual"];
SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
= ={&, n, £} +r Table[SMSReal[es$$["IntPoints", i, Ig]], {i, 3}];
XI r Table[SMSReal [nd$$[i, "X", j]]1, {i, SMSNoNodes}, {j, SMSNoDimensions}];
#n = {{-1, -1, -1}, {1, -1, -1}, (1,1, -1}, {-1,1, -1},

{-1, -1, 1}, (1, -1, 1}, (1,1, 1}, {-1, 1, 1}};
NIk Table[1/8 (1+&En[i, 1]) (1+n=n[i, 2]) (1+Z=n[i, 3]), {i, 1, 8}1;
X+ SMSFreeze[NI.XI]; Jg k SMSD[X, &]; Jgd r Det[Jg];
ul + SMSReal [Table[nd$$[i, "at", j], {i, SMSNoNodes}, {j, SMSNoDimensions}]];
pe = Flatten[uI]; ukr NI.uIl;
Dg £ SMSD[u, X, "Dependency" -» {E, X, SMSInverse[Jg]}];
F £ IdentityMatrix[3] + Dg; JF e Det[F]; Cg k Transpose[F].F; {Em, v, Ox, Qy, Qz} +

SMSReal [Table[es$$["Data", i], {i, Length[SMSGroupDataNames]}]];

{A, u} e SMSHookeToLame [Em, Vv];
WEl/2A (JF-1)"2+u (1/2 (Tr[Cg] -3) -Log[JF]) - {Qx, Qy, Qz}.u;
wgp + SMSReal [es$$["IntPoints", 4, Ig]l];
SMSDo [Rg ¢ Jgd wgp SMSD [W, pe, i];

SMSExport [SMSResidualSign Rg, p$$[i], "AddIn" -» True];

SMSDo [Kg k SMSD[Rg, pe, j1;

SMSExport[Kg, s$$[i, j], "AddIn" -» True];
{3, 1, 24}];

{1, 1, 24}];
SMSEndDo[];
SMSWrite[];

174 AceGen code generator

Default value for ELFENSElementModel is set to:
D3 = three dimensional solid elements

File: test.f Size: 27813

Methods No.Formulae No.Leafs
SKR2999 182 5160

Test example: ELFEN

Here is the generated element compiled and linked into the ELFEN's Visual Studio project. See http://www fgg.uni-1j.si/symech/Us-
er/Acelnstallation.htm for details. The SMSELFENRun function then starts ELFEN with a ELFENExample.dat file as a input file
and a tmpres file as output file. The ELFEN input data file for the one element test example is available in a
$BaseDirectory/Applications/AceGen/Include/ELFEN/ directory.

SMSELFENMake ["ExamplesHypersolidELFEN"]

SMSELFENRun ["ELFEN.dat"]

ABAQUS

m About ABAQUS
ABAQUS® is a commercial FE environment developed by ABAQUS, Inc.

The generated code is linked with the ABAQUS® through the user element subroutines (UEL). Currecntly the interface
for ABAQUS® support direct, static implicit analysis. The interface does not support elements with the internal degrees
of freedom.

In order to put a new element in ABAQUS®we need:

> ABAQUS®,

> sms.h and SMSUtility for files (available in $BaseDirectory/Applications/AceGen/Include/ABAQUS/ direc-
tory),

> element source file.

Paths to the ABAQUS® are set by the SMSABAQUSProject variable in the initialization file Paths.m. Paths.m initialisa-
tion file is located at the directory $BaseDirectory/Applications/AceGen/Paths.m or
$BaseDirectory/Applications/AceFEM/Paths.m.

The SMSABAQUSProject variable contains:
1 - command line that compiles the element source file and builds element object file
2 - the name used to run ABAQUS from command line
Example: SMSABAQUSProject = {"df /compile_only /optimize:4 /list: SMSCompile.txt /show:nomap" ,"abaqus"};

The curret ABAQUS interface is tested for Compaq Visual Fortran 6.6 and ABAQUS 6.4!

Example

<< AceGen" ;

This runs ABAQUS with ABAQUSExample.inp as input file and SED3HIDFHYHI1NHookeA element as user element.

The element source code is automatically downloaded from OL shared library (see also AceShare).

AceGen code generator 175

The ABAQUSExample.inp is available in $BaseDirectory/Applications/AceGen/Include/ABAQUS/ directory.

SMSABAQUSRun ["ABAQUSExample.inp", "UserElement" -» "OL:SED3H1DFHYH1NHookeA"]

m 3D Solid FE for ABAQUS

Regenerate the three-dimensional, eight node finite element described in AceFEM documentation (see Mixed 3D Solid
FE, Elimination of Local Unknowns) for ABAQUS environment.

Generation of element source code for ABAQUS environment

The AceGen input presented in previous example can be used again with the "Environment"—»"ABAQUS" option to produce
ABAQUS's source code file. The current ABAQUS interface does not support internal degrees of freedom. Consequently, the
mixed deformation modes are skipped. The generated code is then incorporated into ABAQUS.

<< "AceGen™";
SMSInitialize["test", "Environment" -» "ABAQUS"];
SMSTemplate["SMSTopology" -» "H1", "SMSSymmetricTangent" -» True

, "SMSGroupDataNames" -> {"E -elastic modulus", "v -poisson ratio",

"0x -volume load X", "Qy -volume load Y", "0z -volume load Z"}

, "SMSDefaultData" -> {21000, 0.3, 0, O, O}];
SMSStandardModule["Tangent and residual"];
SMSDo[Ig, 1, SMSInteger[es$$["id", "NoIntPoints"]]];
Z = {&, n, £} » Table[SMSReal [es$$ ["IntPoints", i, Ig]], {i, 3}1;
XI +» Table[SMSReal [nd$$[i, "X", j]1], {i, SMSNoNodes}, {j, SMSNoDimensions}];
&n = {{-1, -1, -1}, {1, -1, -1}, {1,1, -1}, {-1,1, -1},

{-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1,1, 1}};
NI Table[l/8 (1+&=n[[i, 1]) (1 +n=n[i, 2]) (1 +&=n[i, 3]), {i, 1, 8}]1;
X r SMSFreeze[NI.XI]; Jg k SMSD[X, E]; Jgd k Det[Jg];
ul + SMSReal [Table[nd$$[i, "at", j], {i, SMSNoNodes}, {j, SMSNoDimensions}]];
pe = Flatten[uI]; ukr NI.uIl;
Dg £ SMSD[u, X, "Dependency"” -» {&, X, SMSInverse[Jg]}];
F r IdentityMatrix[3] + Dg; JF £ Det[F]; Cg r Transpose[F].F; {Em, v, 0x, Oy, 0z} +

SMSReal [Table[es$$["Data", i], {i, Length[SMSGroupDataNames]}]];

{A, u} e SMSHookeToLame [Em, V] ;
WEl/2A (JF-1)"2+pu (1/2 (Tr[Cg] -3) -Log[JF]) - {Qx, Qy, Qz}.u;
wgp - SMSReal [es$$["IntPoints", 4, Ig]];
SMSDo [Rg ¢ Jgd wgp SMSD [W, pe, i];

SMSExport [SMSResidualSign Rg, p$$[i], "AddIn" - True];

SMSDo [Kg £ SMSD[Rg, pe, j];

SMSExport[Kg, s$$[i, j], "AddIn" -» True];
o {3, 1, 24}

{1, 1, 24}];
SMSEndDo[];
SMSWrite[];

File: test.for Size: 24577

Methods No.Formulae No.Leafs
SKR 182 5233

176 AceGen code generator

Test example: ABAQUS

Here is the generated element compiled and linked into the ABAQUS's. The SMSABAQUSRun function then starts ABAQUS
with a ABAQUSExample.inp file as a input file and a tmp.res file as output file. The ABAQUS input data file for the one element
test example is available in a $BaseDirectory/Applications/AceGen/Include/ABAQUS/ directory.

SMSABAQUSRun ["ABAQUSExample", "UserElement" -> "ExamplesHypersolidABAQUS"]

MathLink, Matlab Environments

The AceGen can build, compile and install C functions so that functions defined in the source code can be called
directly from Mathematica using the MathLink protocol. The SMSInstallMathLink command builds the executable
program, starts the program and installs Mathematica definitions to call functions in it.

SMSInstallMathLink[source] compile source.c and source.tm source files, build the executable pro
start the program and install Mathematica definitions to call functions

SMSInstallMathLink[] create MathLink executable from the last generated AceGen source co

option name default value

"Optimize" Automatic use additional compiler optimization
"PauseOnExit" False pause before exiting the MathLink executable
"Console" True start the executable as console application
"Platform" Automatic "32" = 32 bit operating system

(all operating systems Windows, Unix, Mac)
"64" = 64 bit operating systems (Mac and Windows)

Options for SMSInstallMathLink.

The SMSInstallMathLink command executes the standard C compiler and linker. For unsupported C compilers, the
user should write his own SMSInstallMathLink function that creates MathLink executable on a basis of the element
source file, the sms.h header file and the SMSUtility.c file. Files can be found at the directory
$BaseDirectory/Applications/AceGen/Include/MathLink/).

At run time one can effect the way how the functions are executued with an additional function SMSSetLinkOptions.

SMSSetLinkOptions[source,options] sets the options for MathLink functions compiled
from source source code file (run time command)
SMSSetLinkOptions[options] = SMSLinkNoEvaluations[last AceGen session,options)

option name

"PauseOnExit"—»value True = pause before exiting the MathLink executable
False = exit without stopping

"SparseArray"—value True = return all matrices in sparse format
False = return all matrices in full format
Automatic = return the matrices in a format
that depends on the sparsity of the actual matrix

Options for SMSSetLinkOptions.

AceGen code generator

177

SMSLinkNoEvaluations[source] returns the number of evaluations of MathLink functions compiled fr
source source code file during the Mathematica session (run time con

SMSLinkNoEvaluations[] = SMSLinkNoEvaluations[last AceGen session]

For more examples se Standard AceGen Procedure, Minimization of Free Energy, Solution to the System of Nonlinear

Equations.

The AceGen generated M-file functions can be directly imported into Matlab. See also Standard AceGen Procedure .

Example: MathLink

<< AceGen";

SMSInitialize["test", "Environment" -> "MathLink"];

SMSModule["Test", Real[u$$[3], x$$, LSS, g$$[3]11],
"Input” » {u$$, x$$, L$$}, "Output” -» gs];

{x, L} + {SMSReal[x$$], SMSReal[L$$]};

ui + SMSReal [Table[u$$[i], {i, 3}]1]

b4 x x
Nil:{—,l——,—(l——)};
L L L L

ukNi.uij;
fn:uz;

gESMSD[f, ui];
SMSExport[g, g$$];
SMSWrite[];

[uis], uis], uial)

File: test.c Size: 1838
Methods No.Formulae No.Leafs
Test 6 81
SMSInstallMathLink[]

{SMSSetLinkOption[test, {i_Integer, j_Integer}],
SMSLinkNoEvaluations|[test], Test[u_?

(ArrayQ([#l1, 1, Head[#1] == Real | | Head[#1] == Integer &] && Dimensions[#1l] === {3} &),

X ? (Head[#H1l] == Real | | Head[#1] == Integer &)
L ? (Head[#1l] == Real | | Head[#1] == Integer &)

Here the generated executable is used to calculate gradient for the numerical test example.

Test[{0., 1., 7.}, n // N, 10.]

{1.37858, 3.00958, 0.945489}

AceGen Examples

Summary of AceGen Examples

The presented examples are meant to illustrate the general symbolic approach to automatic code generation and the use
of AceGen in the process. They are NOT meant to represent the state of the art solution or formulation of particular

178 AceGen code generator

numerical or physiéal problem. '

More examples are available at www.fgg.uni-lj.si/symech/examples/.

Basic AceGen Examples

Standard AceGen Procedure

Solution to the System of Nonlinear Equations

Advanced AceGen Examples
User Defined Functions
Minimization of Free Energy

Implementation of Finite Elements in AceFEM

Examples related to the automation of the Finite Element Method using AceFEM are part of AceFEM documentation
(see Summary of Examples).

Standard FE Procedure

Implementation of Finite Elements in Alternative Numerical Environments

ABAQUS
FEAP
ELFEN

User defined environment interface

AceGen code generator

179

Solution to the System of Nonlinear Equations

m Description

Generate and verify the MathLink program that returns solution to the system of nonlinear equations:
3
axy+x’=0
a-xy =0

where x and y are unknowns and a is parameter.

m Solution

Here the appropriate MathLink module is created.

<< AceGen" ;
SMSInitialize["test", "Environment" -> "MathLink"];
SMSModule["test", Real[x$$, yS, as$$, tols], Integer[ns],
"Input" - {x$$, y$$, a$$, tolss, nss},
"Output” - {x$$, y$$}1;
{x0, yO, a, €} + SMSReal [{x$$, y$$, a$$, tols$s}];
nmax = SMSInteger[n$$];
{x, v} 4 {x0, y0};
SMsDo |
2k {a xy+x’, a - xyz};
Kt e SMSD[&, {x, vY}];
{Ax, Ay} E SMSLinearSolve[Kt, -&];
{x, vy} 4 {x, v} + {&x, AY};
SMSIf[SMSSqrt[{Ax, Ay}.{Ax, Ay}] < €
; SMSExport[{x, v}, {x$$, ¥$$}1;
SMSBreak|[];
1;
SMSIf[i == nmax
, SMSPrintMessage["no convergence"];
SMSReturn([];
1:
, {i, 1, nmax, 1, {x, y}}
E

SMSWrite[];

File: test.c Size: 2343
Methods No.Formulae No.Leafs
test 16 149

Here the MathLink program test.exe is build from the generated source code and installed so that functions defined in the source
code can be called directly from Mathematica. (see also SMSInstallMathLink)

SMSInstallMathLink[]

{SMSSetLinkOption[test, {i_Integer, j_Integer}], SMSLinkNoEvaluations[test],
test [x_?NumberQ, y ?NumberQ, a_ ?NumberQ, tol ?NumberQ, n_?NumberQ]}

180

AceGen code generator

m Verification

For the verification of the generated code the solution calculated by the build in function is compared with the solution calculated
by the generated code.

test[1.9,-1.2,3.,0.0001,10]

{1.93318, -1.24573}

X=.;yY=.;a=3.;
Solve[{axy+x® =10, a- xy? =0}, {x, v}]

{{y > -1.24573, x > 1.93318}, {y > -0.384952+1.18476 i, x > -1.56398 + 1.1363 i},

{y >-0.384952 - 1.184761i, x > -1.56398 - 1.1363 1},
(y >1.00782+0.732222 i, x > 0.597386- 1.83857 i},
(y >1.00782-0.7322221i, x > 0.597386+ 1.83857 i)}

Minimization of Free Energy

m Problem Description

In the section Standard FE Procedure the description of the steady-state heat conduction on a three-dimensional domain
was given. The solution of the same physical problem can be obtained also as a minimum of the free energy of the

problem. Free energy of the heat conduction problem can be formulated as

M= [[(3 kAp.A¢— ¢ Q) d Q2

where a ¢ indicates temperature, a k is the conductivity and a Q is the heat generation per unit volume and () is the
domain of the problem.

The domain of the example is a cube filled with water ([-.0.5m,0.5m]x[-0.5m,0.5m]x[0,Im]). On all sides, apart from
the upper surface, the constant temperature ¢=0 is maintained. The upper surface is isolated so that there is no heat flow
over the boundary. There exists a constant heat source Q=500 W / m? inside the cube. The thermal conductivity of

water is 0.58 W/m K. The task is to calculate the temperature distribution inside the cube.

The problem is formulated using various approaches:

A. Trial polynomial interpolation

M.G Gradient method of optimization + Mathematica directly
M.N Newton method of optimization + Mathematica directly
A.G Gradient method of optimization + AceGen+MathLink
AN Newton method of optimization + AceGen+MathLink
B. Finite difference interpolation
M.G Gradient method of optimization + Mathematica directly
M.N Newton method of optimization + Mathematica directly
A.G Gradient method of optimization + AceGen+MathLink
AN Newton method of optimization + AceGen+MathLink
C.AceFEM Finite element method

The following quantities are compared:

J temperature at the central point of the cube (¢(0.,0.,0.5))

AceGen code generator 181

. time for derivation of the equations

. time for solution of the optimization problem

. number of unknown parameters used to discretize the problem
. peak memory allocated during the analysis

. number of evaluations of function, gradient and hessian.

Method mesh g derivati- solution No.of memory No.of
on variabl- (MB) calls
time (s) time (s) es

A MMA Gradient 5%5%5 559 8.6 59.5 80 136 964
A MMA Newton 5X5x%5 559 8.6 177.6 80 1050 4
A.AceGen.Gradient 5x5X%5 559 6.8 33 80 4 962

A.AceGen.Newton 5x5x5 559 13.0 0.8 80 4 4
B.MMA .Gradient 11x 575 0.3 11.7 810 10 1685
11x11
B.MMA Newton 11x 575 0.3 1.1 810 16 4
11x11
B.AceGen.Gradient 11X 575 14 6.30 810 4 1598
11x11
B.AceGen.Newton 11x 575 40 0.8 810 4 4
11x11
C.AceFEM 10x10x10 56.5 50 20 810 6
C.AceFEM 20x20x20 559 50 32 7220 32
C.AceFEM 30x30x30 559 50 16.8 25230 139 2

The case A with the trial polynomial interpolation represents the situation where the merit function is complicated and
the number of parameters is small. The case B with the finite difference interpolation represents the situation where the
merit function is simple and the number of parameters is large.

REMMARK: The presented example is meant to illustrate the general symbolic approach to minimization of compli-
cated merit functions and is not the state of the art solution of thermal conduction problem.

m A) Trial Lagrange polynomial interpolation
Definitions

A trial function for temperature ¢ is constructed as a fifth order Lagrange polynomial in x y and z direction. The chosen trial
function is constructed in a way that satisfies boundary conditions.

<< AceGen" ;

Clear([x, vy, z, a] ;

kcond = 0.58; O = 500;

order = 5;

nterm = (order - 1) (order - 1) (order)

80

182 AceGen code generator

Here the fifth order Lagrange polynomials are constructed in three dimensions.

toc = Table[{x, 0}, {x, -0.5, 0.5, 1/ order}]; xp = MapIndexed|[
InterpolatingPolynomial [ReplacePart[toc, 1, {#, 2}], x] &, Range[2, order]];

yp = MapIndexed[InterpolatingPolynomial [ReplacePart[toc, 1, {#, 2}], v] &,
Range[2, order]];

toc = Table[{x, 0}, {x, 0., 1., 1/ order}];

zp = MapIndexed|
InterpolatingPolynomial [ReplacePart[toc, 1, {#, 2}], z] &, Range[2, order + 1]];

¢i = Array[a, nterm];

poly = Flatten[Outer[Times, xp, yp, zp]] // Chop;

¢ = poly.¢i;

poly[[28]]
Plot3D[poly[[28]] /. 2> 0.5, {x, -0.5, 0.5}, {y, -0.5, 0.5}, PlotRange - All]

1.76606x107 (-0.5+x) (-0.3+x) (-0.1+%) (0.3+x) (0.5+%) (-0.5+y)
(=0.3+y) (-0.1+y) (0.3+y) (0.5+y) (-1.+2) (-0.8+2) (-0.4+2) (-0.2+2) z

Here the Gauss points and weights are calculated for ngpxngpxngp Gauss numerical integration of the free energy over the domain
[-.0.5m,0.5m]x[-0.5m,0.5m]x[0,Im].

ngp = 6;
<< NumericalDifferentialEquationAnalysis";

gl = GaussianQuadratureWeights[ngp, -0.5, 0.5];
g2 = GaussianQuadratureWeights[ngp, -0.5, 0.5];
g3 = GaussianQuadratureWeights[ngp, 0, 1];

gp = {91[[#1[[1]1], 111, g2[[#1[[2]], 111, g3[[#1[[31], 111,
gl[[#1[[1]1], 2]1] »g2[[#1[[2]], 2]] *g3[[#1[[3]], 2]1]1} & /@
Flatten[Array[{#3, #2, #1} &, {ngp, ngp, ngp}], 2];

183

AceGen code generator

Direct use of Mathematica

The subsection Definitions has to be executed before the current subsection.

start = SessionTime[];

Ap = {D[¢, x], D[¢, v], D[o, 2]1};

NI=1/2kcond Ap.Ap-¢0Q;

Ii = Total[Map[(#[[4]]1 T /. {x > #[[1]], vy~ #[[2]], z-> #[[31]}) &, gp1];
derivation = SessionTime[] - start

10.8556096

G. Gradient based optimization

start = SessionTime[]; ii = 0;

sol = FindMinimum[IIi, Array[{a[#] , 0.} &, nterm],
Method -» "Gradient", EvaluationMonitor :» (ii++;)];

(ii, ¢ /. sol[[2]] /. {x >0,y >0, z > 0.5}}

SessionTime[] - start

{993, 55.8724}

59.5956944

N. Newton method based optimization

start = SessionTime[]; ii = 0;

sol = FindMinimum[Ili, Array[{a[#] , 0.} &, nterm],
Method -» "Newton", EvaluationMonitor :» (ii++;)];

{ii, ¢ /. sol[[2]] /. {x>0, y—>0, 2->0.5}}

SessionTime[] - start

{4, 55.8724}

177.6454416

AceGen code generation

The subsection Definitions has to be executed before the current subsection.

start = SessionTime[]; SMSInitialize["Thermal",
"Environment" -> "MathLink", "Mode" - "Prototype", "ADMethod" -> "Forward"]

nf[fi] =
ai r SMSReal [Array[a$$, nterm]];
ag k SMSArray[ai];
{xa, ya, za, wa} r Map[SMSArray, Transpose[gp]];
{xi, yi, zi} » SMSFreeze[{SMSPart[xa, i], SMSPart[ya, i], SMSPart[za, i]}];
{xpr, ypr, zpr} e{xp /. x> xi, yp/.y~>vyi, zp /. 2 » zi};
poly k SMSArray[Flatten[Outer[Times, xpr, ypr, zpr]l];
¢t £ SMSDot [poly, ag];
A¢p £ SMSD[ot, {xi, yi, zi}];
wi E SMSPart[wa, i];
wi (1/ 2 kcond Ad.Ad - dt Q)

184 AceGen code generator

SMSModule["FThermal", Real[a$$[nterm], £$$], "Input” -» a$$, "Output” -» £$$];
SMSExport [0, £$$];

SMSDo[i, 1, gp // Length];

Nenf[i];

SMSExport[II, £$$, "AddIn" -» True];

SMSEndDo[];

SMSModule["GThermal", Real[a$$[nterm], g$$[nterm]], "Input"” -» a$$, "Output” -» g$$];
SMSExport [Table[0, {nterm}], g$$];
SMSDo[i, 1, gp // Length];
nenf[i];
SMSDo[j, 1, nterm];
6Il £ SMSD[II, ag, j, "Method" -> "Forward"];
SMSExport[éII, g$$[j], "AddIn" -» True];
SMSEndDo[];
SMSEndDo[];

derivation = SessionTime[] - start

6.5794608

SMSModule["HThermal",
Real[a$$[nterm], h$$[nterm, nterm]], "Input" -» a$$, "Output”" -» h$$];
SMSDo[i, 1, nterm];
SMSDo[j, 1, nterm];
SMSExport[0, h$$[i, j]11;
SMSEndDo[];
SMSEndDo[];
SMSDo[i, 1, gp // Length];
nenf[i];
SMSDo[j, 1, nterm];
S6Il £ SMSD[II, ag, j, "Method" -> "Forward"];
SMSDo [k, 1, nterm];
hij e SMSD[61, ag, k, "Method" -> "Forward"];
SMSExport[hij, h$$[j, k], "AddIn" - True];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

SMSWrite[];

Method : FThermal 162 formulae, 6025 sub-expressions
Method : G‘Thermal 161 formulae, 6133 sub-expressions
Method : HThermal 79 formulae, 4606 sub-expressions
[11] File created : Thermal e C size : 133849

AceGen code generator 185

SMSInstallMathLink["Optimize" —» False]
derivation = SessionTime[] - start

{SMSSetLinkOption[Thermal, {i Integer, j Integer}], SMSLinkNoEvaluations[Thermal],
FThermal[a_? (ArrayQ[#l, 1, NumberQ] && Dimensions [H#1] === {80} &)],

GThermal[a_? (ArrayQ[#1l, 1, NumberQ] && Dimensions [H#1] === {80} &)],
HThermal [a_? (ArrayQ[#1l, 1, NumberQ] && Dimensions [H1] === {80} &)]}
30.4237472

AceGen Solution

G. Gradient based optimization

start = SessionTime[]; ii = 0;
sol = FindMinimum[FThermal[¢i], {¢i, Table[O0, {nterm}]},
Method -» "Gradient", Gradient -» GThermal[¢i], EvaluationMonitor :» (ii++;)];
{ii, ¢ /. MapThread[Rule, List@@sol[[2, 1]]] /. {x >0, y~>0, z-> 0.5},
SessionTime[] - start}

{931, 55.8724, 2.9943056}

N. Newton method based optimization

start = SessionTime[]; ii = 0;
sol = FindMinimum [FThermal [¢i], {¢i, Table[0, {nterm}]},
Method -» {"Newton", Hessian -» HThermal[¢i]},
Gradient » GThermal [¢i], EvaluationMonitor :» (ii++;)];
{ii, ¢ /. MapThread[Rule, List@@sol[[2, 1]]] /. {x >0, y~>0, z-> 0.5},
SessionTime[] - start}

{4, 55.8724, 0.7811232}

m B) Finite difference interpolation

Definitions

The central difference approximation of derivatives is used for the points inside the cube and backward or forward difference for
the points on the boundary.

<< AceGen";

Clear[a, i, j, k];

nx =ny = nz = 11;
dlx=1./ (nx-1);
dly=1./ (ny-1);
dlz=1./ (nz-1);
bound = {0};

nboun = 1;

kcond = 0.58; Q0 = 500;

186

AceGen code generator

nterm = 0; dofs = {};
index = Table[Which[
i<2 || 12 nx+1 || j<2 || 3J =2 ny+l1 || k< 2,Db[1]
, k=nz+2,
If[FreeQ[dofs, a[i, j, k-1]]
, ++nterm; AppendTo[dofs, a[i, j, k- 1] » nterm]; nterm
,af[i, j, k-1] /. dofs
1
, True,
If [FreeQ[dofs, a[i, j, k]]
, ++nterm; AppendTo[dofs, a[i, j, k] » nterm]; nterm
,al[i, 3, k] /. dofs
1
1,
{i, 1, nx+2}, {j, 1, ny+2}, {k, 1, nz+2}] /. b[i] > nterm+ i;
¢i = Array[a, nterm];
nterm

810

Direct use of Mathematica

The subsection Definitions have to be executed before the current subsection.

start = SessionTime[];
oi = Sum[

dlxt = If[i=2 || i=nx+1, dlxt =dlx /2, dlx];
dlyt = If[j=2 || j=ny+1, dlyt =dly/ 2, dly];
dlzt =If[k=2 || k=nz+1, dlzt =dlz /2, dlz];
vol = dlxt dlyt dlzt;
aijk = Map[If[# > nterm, bound[[# - nterm]], a[#]] &,
Extract[index, {{i, j, k}, {i-1, 3, k}, {i+1, 3, k}, {i, 3-1, k},
{i,3+1, k}, {i, 3, k-1}, {i, 3, k+1}}]1;

aijk[[3]] -aijk[[2]] aijk[[5]] -aijk[[4]] aijk[[7]]-aijk[[6]]

grad = { I} ’
2dlxt 2dlyt 2dlzt

vol (1/ 2 kcond grad.grad-Qaijk[[1]])
r {i, 2, nx+1}, {j, 2, ny+1}, {k, 2, nz + 1}

]
derivation = SessionTime[] - start

0.4105904

G. Gradient based optimization

start = SessionTime[]; ii = 0;
sol = FindMinimum[Ili, Array[{a[#] , 0.} &, nterm],
Method -» "Gradient", EvaluationMonitor :» (ii++;)];

{ii, a[index[[(nx+3) /2, (ny+3) /2, (nz+3) /2]]] /. sol[[2]], SessionTime[] - start}

{1685, 57.5034, 11.6767904}

J

14

AceGen code generator 187

N. Newton method based optimization

start = SessionTime[]; ii = 0;
sol = FindMinimum|[IIi, Array[{a[#] , 0.} &, nterm],
Method - "Newton", EvaluationMonitor > (ii++;)];
{ii, a[index[[(nx+3) /2, (ny+3) /2, (nz+3) /2]]] /. sol[[2]], SessionTime[] - start}

{4, 57.5034, 1.0915696}

AceGen code generation

The subsection Definitions have to be executed before the current subsection.

start = SessionTime[]; SMSInitialize["Thermal",
"Environment" -> "MathLink", "Mode" -» "Prototype", "ADMethod" -> "Backward"]

nffi , j_, k] :=

indexp r SMSInteger [Map [
indexS$$[(#[[1]] -1) » (nyp+2) (nzp+2) + (#[[2]]-1) » (nzp+2) + #[[3]]] &,
{{i, j, K}, {i-1, j, k}, {i+1, j, Kk}, {1, -1, k},
{i, 7+1, k}, {i, 3, k-1}, {i, j, k+1}}]1;
aijk + SMSReal [Map[a$$[#] &, indexp]];
{dx, dy, dz, kc, Ot} r SMSReal [Array[mc$$, 5]];
SMSIf[i==2 || i=nxp+1];
dlxtadx/ 2;
SMSElse[];
dlxt 4 dx;
SMSEndIf[dlxt];
SMSIf[j=2 || j=nyp+1];
dlytady/ 2;
SMSElse[];
dlyt 4 dy;
SMSEndIf [dlyt];
SMSIf[k=2 || k=nzp+1];
dlzt adz/ 2;
SMSElse[];
dlzt 41dz;
SMSEndIf[dlzt];
vol Fdlxt dlyt dlzt;
aijk[[3]] -aijk[[2]] aijk[[5]] -aijk[[4]] aijk[[7]]-aijk[[6]]

gra ={ ’ ’ };
2dlxt 2dlyt 2dlzt
vol (1/2kcgrad.grad -Qt aijk[[1]])

188 AceGen code generator

SMSModule["FThermal",

Integer[ndof$$, nt$$[3], index$S["+"]1], Real[aS$S["+"], meSS["+"], £$$1],

"Input" -» {ndof$$, nt$$, index$$, as$$, mc$$}, "Output” -» £$$];
SMSExport [0, £$$];
{nxp, nyp, nzp} F SMSInteger [Array[nt$$, 3]];
SMSDo[i, 2, nxp +1];
SMSDo[j, 2, nyp+1];

SMSDo [k, 2, nzp +1];

nenffi, j, k];

SMSExport[II, £$$, "AddIn" - True];

SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

SMSModule["GThermal", Integer[ndof$$, nt$$[3], index$$S["+"11,
Real[aSS["*"], mcS$S["+"], g$$[ndofss]],
"Input" -» {ndof$$, ntS, index$$, as$$, mcS}, "Output” -» g$$];

ndof SMSInteger [ndof$$];

{nxp, nyp, nzp} r SMSInteger [Array[nt$$, 3]1];

SMSDo[i, 1, ndof];

SMSExport[0, g$$[i]];

SMSEndDo[];

SMSDo[i, 2, nxp +1];
SMSDo[j, 2, nyp+1];
SMSDo [k, 2, nzp +1];

nmenfli, j, k];

SMSDo[il, 1, indexp // Length];
dof £ SMSPart[indexp, il];
SMSIf[dof <= ndof];

gi e SMSD[I, aijk, i1];
SMSExport[gi, g$$[dof], "AddIn" - True];
SMSEndIf[];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

derivation = SessionTime[] - start

1.5822752

AceGen code generator

189

SMSModule["HThermal", Integer[ndof$$, nt$$[3], index$$["+"]1],
Real[aS$$S["+"], mc$S["+"], h$$[ndof$$, ndofs]],
"Input" -» {ndof$$, nt$$, index$$, as$$, mc$$}, "Output” -» h$$];

ndof r SMSInteger [ndof$$];

{nxp, nyp, nzp} r SMSInteger [Array[nt$$, 3]1];

SMSDo[i, 1, ndof];

SMSDo[j, 1, ndof];

SMSExport[0, h$$[i, j11;

SMSEndDo[];
SMSEndDo[];

SMSDo[i, 2, nxp +1];
SMSDo[j, 2, nyp +1];
SMSDo [k, 2, nzp +1];

nenfli, j, k1;

SMSDo[il, 1, indexp // Length];
dofi r SMSPart[indexp, il];
SMSIf[dofi <= ndof];

gi k SMSD[II, aijk, il];
SMSDo[jl, 1, indexp // Length];
dofj r SMSPart[indexp, j1l];
SMSIf[dofj <= ndof];
hij ¢ SMSD[gi, aijk, j1];
SMSExport[hij, h$$[dofi, dofj], "AddIn" - True];
SMSEndIf[];
SMSEndDo[];
SMSEndIf[];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

SMSWrite[];

4

Method : FThermal 32 formulae, 471 sub-expressions
Method : GThermal 42 formulae, 550 sub-expressions
Method : HThermal 38 formulae, 559 sub-expressions
[2] File created : Thermal. C size : 11801

190 AceGen code generator

SMSInstallMathLink["Optimize" —» True]
derivation = SessionTime[] - start

{SMSSetLinkOption[Thermal, {i_Integer, j Integer}], SMSLinkNoEvaluations[Thermal],
FThermal [ndof ?NumberQ, nt_ ? (ArrayQ[#l, 1, NumberQ] && Dimensions [H#1] === {3} &),
index_? (ArrayQ[#l, 1, NumberQ] &),
a_? (ArrayQ([#l, 1, NumberQ] &), mc_? (ArrayQ[#1l, 1, NumberQ] &)],
GThermal [ndof_ ?NumberQ, nt_ ? (ArrayQ([#l, 1, NumberQ] && Dimensions [#1l] === {3} &),
index_? (ArrayQ[#l, 1, NumberQ] &),
a_? (ArrayQ([#l, 1, NumberQ] &), mc_? (ArrayQ[#1l, 1, NumberQ] &)],
HThermal [ndof ?NumberQ, nt ? (ArrayQ[#l, 1, NumberQ] && Dimensions[H1] === {3} &),
index_? (ArrayQ[#fl, 1, NumberQ] &),
a_? (ArrayQ(#l, 1, NumberQ] &), mc_? (ArrayQ[#1l, 1, NumberQ] &)]}

7.9414192

AceGen Solution

G. Gradient based optimization

start = SessionTime[]; ii = 0;
indexb = Flatten[index];
sol = FindMinimum [
FThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dlx, dly, dlz, kcond, Q0}]
, {¢i, Table[O0, {nterm}]},
Method -» "Gradient",
Gradient -
GThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dlx, dly, dlz, kcond, Q}]
, EvaluationMonitor » (ii++;)];
{ii, a[index[[(nx+3) /2, (ny+3) /2, (nz+3) /2]]]1 /.
MapThread[Rule, List@@sol[[2, 1]]], SessionTime[] - start}

{1599, 57.5034, 6.3090720}

N. Newton method based optimization

start = SessionTime[]; ii = 0;

indexb = Flatten[index /. b[i] > nterm+ i];

sol = FindMinimum [
FThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dlx, dly, dlz, kcond, Q}]
, {¢i, Table[0, {nterm}]},
Method -» {"Newton", Hessian - HThermal [nterm,

{nx, ny, nz}, indexb, Join[¢i, bound], {dlx, dly, dlz, kcond, Q}]},
Gradient -» GThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound],
{d1lx, dly, dlz, kcond, Q}]
, EvaluationMonitor :» (ii++;)]; {ii,
o[index[[(nx+3) /2, (ny+3) /2, (n2+3) /2]]1 /.

MapThread[Rule, List@@sol[[2, 1]]], SessionTime[] - start}

{4, 57.5034, 0.8011520}

AceGen code generator 191

The tangent matrix is in the case of finite difference approximation extremely sparse.

MatrixPlot[
HThermal [nterm, {nx, ny, nz}, indexb, Join[0 ¢i, bound], {dlx, dly, dlz, kcond, Q}]]

1 1
200 200
400 400
600 600
810 810

m C) Finite element method

Solution

First the finite element mesh 30x30x30 is used to obtain convergence solution at the central point of the cube. The
procedure to generate heat-conduction element that is used in this example is explained in AceGen manual section
Standard FE Procedure .

<< AceFEM";
start = SessionTime[];
SMTInputDatal];
k =0.58; 0 =500;
nn = 30;
SMTAddDomain["cube", "ExamplesHeatConduction", {"kO %" -k, "0 %" - 0}];
SMTAddEssentialBoundary[
{("X" = -0.5[] "X" =0.5 || "¥"=-0.5 || "¥"=0.5 || "z"=0.&, 1->0}];
SMTMesh["cube", "H1", {nn, nn, nn}, {
{{{-0.5, -0.5, 0}, {0.5, -0.5, 0}}, {{-0.5, 0.5, 0}, {0.5, 0.5, 0}}},
{{{-0.5, -0.5, 1}, {0.5, -0.5, 1}}, {{-0.5, 0.5, 1}, {0.5, 0.5, 1}}}
W
SMTAnalysis[];

SMTNextStep[0, 1];
SMTNewtonIteration[];

SMTPostData["T+", {0, 0, 0.5}]
SessionTime[] - start

55.8765

27.7098448

192 AceGen code generator

SMTShowMesh["Mesh" - True, "Elements" - True, "Field" -» "T+"]

-0.155e2

0.132e2
0.110e2

0.886e1
- 0.664e1
0.443e1
0.221e1
I
T
Max.
0.6190e2

Min.
0

AceFEM

Troubleshooting and New in
version

AceGen Troubleshooting

m General
* Rerun the input in debug mode (SMSInitialize[.."Mode"->"Debug)].

* Divide the input statements into the separate cells (Shift+Ctrl+D), remove the ; character at the end of the
statement and check the result of each statement separately.

* Check the precedence of the special AceGen operators F,+,4,1. They have lower precedence than e.g // operator.
(see also SMSR)

* Check the input parameters of the SMSVerbatim , SMSReal, SMSInteger, SMSLogical commands. They are
passed into the source code verbatim, without checking the syntax, thus the resulting code may not compile
correctly.

AceGen code generator 193

* Check that all used functions have equivalent function in the chosen compiled language. No additional libraries
are included automatically by AceGen.

e Try to minimize the number of calls to automatic differentiation procedure. Remember that in backward mode of
automatic differentiation the expression SMSDJ[a,c]+SMSD[b.c] can result in code that is twice as large and
twice slower than the code produced by the equivalent expression SMSDJ[a+b.c].

* The situation when the new AceGen version gives different results than the old version does not necessary mean
that there is a bug in AceGen. Even when the two versions produce mathematically equivalent expressions, the
results can be different when evaluated within the finite precision arithmetics due to the different structure of the
formulas. It is not only the different AceGen version but also the different Mathematica version that can produce
formulae that are equivalent but not the same (e.q. formulas Sin[x]* + Cos[x]* and 1 are equivalent, but not the
same).

* The expression optimization procedure can recognize various relations between expressions, however that is no
assurance that relations will be in fact recognized.Thus, the users input must not rely on expression optimization
as such and it must produce the same result with or without expression optimization (see Automatic Differentia-
tion Expression Optimization,) .

¢ Check the argument of the SMSIf command for incorrect comparitions. The expressions a===b or a=!=b are
executed in Mathematica and not later in a source code!!! Use the a==b and a !=b form instead of the a===b or
a=!=b form.

* Check the information given at www fgg.uni-lj.si/symech/FAQ/.

m Message: Variables out of scope

See extensive documentation and examples in Auxiliary Variables, SMSIf .SMSDo ,SMSFictive and additional
examples below.

m Symbol appears outside the "If" or "Do" construct

Erroneous input

<< AceGen";
SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, £$$1];
X F SMSReal [x$$];
SMSIf[x <= 0];
fa xz;
SMSElse[];
f48in[x];
SMSEndIf[];
SMSExport[f, £$$];

194

AceGen code generator

Corrected input

<< AceGen" ;
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$1];
X £ SMSReal [xS];
SMSIf[x <=0];
fa xz;
SMSElse[];
f48in[x];
SMSEndIf[f];
SMSExport[f, £$§];

m Symbol is defined in other branch of "If" construct

Erroneous input

<< AceGen";
SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, £$$1];
x £ SMSReal [xS];
fax;
SMSIf[x <= 0];
f4 xz;
SMSElse[];
ve2f;

Corrected input

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, £$$]11];
X £ SMSReal [xS];
fax;
tmp + £;
SMSIf[x <= 0];
f4 x2;
SMSElse[];
Y E2tmp;

m Generated code does not compile correctly

The actual source code of a single formula is produced directly by Mathematica using CForm or FortranForm com-
mands and not by AceGen. However Mathematica will produce compiled language equivalent code only in the case
that there exist equivalent command in compiled language. The standard form of Mathematica expressions can hide
some special functions. Please use FullForm to see all used functions. Mathematica has several hundred functions and
number of possible combinations that have no equivalent compiled language form is infinite. There are to ways how to

get compiled language code out of symbolic input:

* one can include special libraries or write compiled language code for functions without compiled language

equivalent

* make sure that symbolic input contains only functions with the compiled language equivalent or define addi-

tional transformations as in example below

AceGen code generator 195

Erroneous input

a<b<ec
FullForm[a < b < c]
CForm[a < b < c]

There exist no standard C equivalent for Less so it is left in original form and the resulting code would probably failed
to compile correctly.

Corrected input

Unprotect [CForm] ;
CForm[Less[a , b , c]] :=a<b && b<c;
Protect [CForm] ;

CForm[a < b < c]

m MathLink

* if the compilation is to slow restrict compiler optimization with SMSInstallMathLink["Optimize"—False]

* in the case of sudden crash of the MathLink program use SMSInstallMathLink["PauseOnExit"—True] to see the
printouts generated by SMSPrint

New in version
1. Mathematica syntax - AceGen syntax
2. new "in-cell" form of the SMSIf and SMSDo constructs (Program Flow Control) enables more direct transi-
tion from the Mathematica input into the AceGen input
3. new commands SMSSwitch SMSWhich
4. new boundary conditions sensitivity types (See also: SMTSensitivity, SMTAddSensitivity, Standard user

subroutines, Solid, Finite Strain Element for Direct and Sensitivity Analysis, Parameter, Shape and Load
Sensitivity Analysis of Multi-Domain Example .)

5. M switch for Node Identification data enables formulation of multi-field problems

6. IMPORTANT! The input syntax of the Dependency option of SMSReal and SMSFreeze commands has been
changed. In the case of scalar expression, the input form
Oexp Oexp

SMSFreeze |exp, Dependency -> {{pl, P2s -}y { o0, | op
2 1

’ } H is no longer supported.

o 3 .
Please use the SMSFreeze [exp, Dependency -> {{pl ’ % } ’ {pz ’ %’ } ;e H input form
1 2
instead.
7. Detailed documentation and new options for creation of User Defined Functions

8. New form of SMSFreeze function

196

AceGen code generator

Reference Guide

AceGen Session

SMSiInitialize

SMSInitialize[name] start a new AceGen session with the session name name
SMSInitialize[name, opt] start a new AceGen session with the session name name and options opt
nitialization of the AceGen system.
option name default value
"Language" "Mathematica" source code language
"Environment" "None" is a character constant that identifies the numerical
environment for which the code is generated
"VectorLength" 500 length of the system vectors (very large system
vectors can considerably slow down execution)
"Mode" " Optimal" define initial settings for the options of the AceGen functions
"GlobalNames" {"v","1","b"} first letter of the automatically generated auxiliary real,
integer, and logical type variables
"SubroutineName" H& pure function applied on the
names of all generated subroutines
"Debug" for "Mode": if True extra (time consuming) tests of code
"Debug"=True correctness are performed during derivation of
"Prototype"=False formulas and also included into generated source code
"Optimal"=>False
"Precision" 100 default precision of the Signatures of the Expressions
Options for SMSinitialize.
L anguage description Generic name
"Fortran" fixed form FORTRAN 77 code "Fortran"
"Fortran90" free form FORTRAN 90 code "Fortran"
"Mathematica" code written in Mathematica "Mathematica"
programming language
"c" ANSI C code "C"
"CH++" ANSI C++ code "c"
"Matlab" standard Matlab "M" file "Matlab"

upported languages.

AceGen code generator 197

mode
"Plain" all Expression Optimization procedures are excluded
"Debug" options are set for the fastest derivation of the code, all the expressions
are included into the final code and preceded by the explanatory comments
"Prototype" options are set for the fastest derivation of the code,
with moderate level of code optimization
"Optimal" options are set for the generation of the fastest and the shortest

generated code (it is used to make a release version of the code)

upported optimization modes.

environment description Language

"None" plain code defined by
"Language" option

"MathLink" the program is build from the generated source code and installed "C"
(see MathLink, Matlab Environments) so that functions defined
in the source code can be called directly from Mathematica
(see Standard AceGen Procedure , SMSInstallMathLink)

"User" arbitrary user defined finite element defined by
environment (see Standard FE Procedure , "Language" option
User defined environment interface)

"AceFEM" Mathematica based finite element "C"
environment with compiled numerical module
(element codes and computationally intensive parts are written in
C and linked with Mathematica via the MathLink protocol)
(see Standard FE Procedure , AcecFEM Structure)

"AceFEM—-MDriver" AceFEM finite element environment with symbolic "Mathematica"
numerical module (elements and all procedures written
entirely in Mathematica' s programming language)
(see Standard FE Procedure , AcecFEM Structure)

"FEAP" research finite element environment "Fortran"
written in FORTRAN (see FEAP)

"ELFEN" commercial finite element environment "Fortran"
written in FORTRAN (see ELFEN)

"ABAQUS" commercial finite element environment "Fortran"
written in FORTRAN (see ABAQUS)

Currently supported numerical environments.

In a "Debug" mode all the expressions are included into the final code and preceded by the explanatory comments.
Derivation of the code in a "Optimal" mode usually takes 2-3 times longer than the derivation of the code in a
"Prototype" mode.

198 AceGen code generator

This initializes the AceGen system and starts a new AceGen session with the name "test". At the end of the session, the FORTRAN
code is generated.

SMSInitialize["test", "Language" -> "Fortran"];

SMSModule

SMSModule[name] start a new module with the name
name without input/output parameters

SMSModule[name, start a new module with the name name
typellpii,pi2,.-1, type2[pz2;,p22,-.),-..] and a list of input/output parameters p;;,
P12,.-P21.P22, of specified types

yntax of SMSModule function.

parameter types

Real[p;,p>,...] list of real type parameters

Integer[p;,p2,...] list of integer type parameters

Logical[p;,p,...] list of logical type parameters
"typename"[p;,p2,...] list of the user defined type "typename" parameters
Automatic[p;,p2,...] list of parameters for which type is not defined

(only allowed for interpreters like Mathematica and Matlab)

ypes of input/output parameters

The name of the module (method, subroutine, function, ...) name can be arbitrary string or Automatic. In the last case
AceGen generates an unique name for the module composed of the session name and an unique number. All the
parameters should follow special AceGen rules for the declaration of external variables as described in chapter Sym-
bolic-Numeric Interface. An arbitrary number of modules can be defined within a single AceGen session. An excep-
tion is Matlab language where the generation of only one module per AceGen session is allowed.

option name default value

"Verbatim"—>"text" None string "text" is included at the end of the
declaration block of the source code verbatim

"Input" All list of input parameters

"Output"” All list of output parameters

ptions for SMSModule.

By default all the parameters are labeled as input/output parameters. The "Input" and the "Output" options are used in
MathLink (see Standard AceGen Procedure) and Matlab to specify the input and the output parameters.

The SMSModule command starts an arbitrary module. However, numerical environments usually require a standardized
set of modules (traditionally called "user defined subroutines") that are used to perform specific task (e.g. to calculate
tangent matrix) and with a strict set of I/O parameters. The SMSStandardModule command can be used instead of
SMSModule for the definition of the standard user subroutines for supported finite element numerical environments.

AceGen code generator

199

This creates a subroutine named "sub1" with real parameters x, z, real type array y(5), integer parameter i, and parameter m of the

user defined t

ype "mytype" .

<<AceGen";
SMSInitialize["test", "Language"->"Fortran"];
SMSModule["subl",Real[x$$,yS[5]1],Integer[i$$],Real[z$$],

"mytype" [m$$], "Verbatim"->"COMMON /xxx/a(5)"1];

SMSWrite[];
FilePrint["test.f"]

Method : Sl.'lb]. 0 formulae, 0 sub-expressions

SMSWrite

(0] File createa : LSt . £ size : 814

ldhdkhhdhhhdhdhhhdhhdhhhhdhhdhhhdhhdhhhdhhdhhddhrhdhrhdhrhdhrhddrhdhrrddx

!* AceGen 2.103 Windows (18 Jul 08) *
I* Co. J. Korelc 2007 18 Jul 08 15:41:06%*
Ik hhkdhhhdhhhdhhhhrhhhdhhhkdhhdhdhdrdhdhdhhdhdrdhddrdhrdhrdrrdrrdrddrrdx
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode : Optimal
0 Method: Automatic
subl size :0

0 subexpressions

254 bytes

s o0 e s e

!******************* S U B R O U T I N E EREE R R R R E R EEEEEEEEEEEE S
SUBROUTINE subl(v,x,y,i,z,m)
IMPLICIT NONE
include 'sms.h'
INTEGER i
DOUBLE PRECISION v(5001),x,y(5),2
TYPE (mytype)::m
COMMON /xxx/a(5)
END

SMSWrite[] write source code in the file "session_name.ext

SMSWrite[" file" ,opt] write source code in the file " file"

reale automatically generated source code file.

language file extension
" Fortran" name.f
"Fortran90" name.f90

" Mathematica" name.m

"c" name.c
"C++" name.cpp
"Matlab" name.m

ile extensions.

200 AceGen code generator

option name default value

"Splice" {} list of files interprated (see Splice) and
prepended to the generated source code file
(in the case of standard numerical invironment a
special interface file is added to the list automatically)

"Substitutions" {} list of rules applied on all
expressions before the code is generated
(see also User Defined Functions)

"IncludeNames" False the name of the auxiliary variable
is printed as a comment before definition

"IncludeAllFormulas" False also the formulae that have no effect on the output
parameters of the generated subroutines are printed

"OptimizingLoops" 1 number of additional optimization loops over the whole code

"IncludeHeaders" {} additional header files to be included in the
declaration block of all generated subroutines
(INCLUDE in Fortran and USE in Fortran90)
or in the head of the C file. Default
headers are always included as follows:
"Fortran" = {"sms.h"}
"Fortran90" = {"SMS"}
"Mathematica" = {}
"C" = {"sms.h"}
"C++" = {"sms.h"}

"MaxLeafCount" 3000 due to the limitations of Fortran compilers,
break large Fortran expressions into
subexpressions of the size less than "MaxLeafCount"
(size is measured by the LeafCount function)

"Local Auxiliary Variables False The vector of auxiliary variables
" is defined locally for each module.

ptions for SMSWrite.

The "splice-file" is arbitrary text file that is first interpreted by the Mathematica’s Splice command and then
prepended to the automatically generated source code file. Options "IncludeNames" and "IncludeAllFormulas" are
useful during the "debugging" period. They have effect only in the case that AceGen session was initiated in the
"Debug" or "Prototype" mode. Option "OptimizingLoops" has effect only in the case that AceGen session was initiated
in the "Optimal" or a higher mode.

The default header files are located in $BaseDirectory/Applications/AceGen/Include/ directory together with the
collection of utility routines (SMSUtility.c and SMSUtility.f). The header files and the utility subroutines should be
available during the compilation of the generated source code.

See also: Standard AceGen Procedure

This write the generated code on the file "source.c" and prepends contents of the file "test.mc" interpreted by the Splice command.

<<AceGen" ;

strm=OpenWrite["test.mc"];
WriteString[strm,"/*This is a \"splice\" file <*100+1*> */"];
Close[strm];

AceGen code generator

201

FilePrint["test.mc"]
/*This is a "splice" file <*100+1*> x/

SMSInitialize["test", "Language" -> "C"];
SMSModule["subl", Real[x$$, yS[2]111;
SMSExport[BesselJ[SMSReal[y$$[1]],SMSReal[y$$[2]1]1,%x$81;
SMSWrite["source","Splice" -> "test.mc",
"Substitutions"->{BesselJ[i_,j_]:>"mybessel"[i,j]}];

Method : Sl.lb]. 1 formulae, 13 sub-expressions

[0] File created : source.cC size : 742

FilePrint["source.c"]

/***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 15:41:07*

khkhkkkhhkhkhhkhkhhhhkkhhhkdhhhhhdrhdhhdhdhdhdxdhhdrhdhddxdddxddxdrrdhxrdxr*x

User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae : 1 Method: Automatic
Subroutine subl size :13

Total size of Mathematica code 13 subexpressions
Total size of C code : 146 bytes*/
#include "sms.h"

/*This is a "splice" file 101 */

[Rrkkkkkkhkkkkhkkkkk*k*k S U B R O UT I N E **xkkkkkdhdhhhhhhkhhhkhdhk/

void subl(double v[5001],double (*x),double y[2])

{
(*x)=mybessel(y[0],y[1]);
}i

SMSVerbatim

SMSVerbatim[source] write textual form of the parameter source
into the automatically generated code verbatim

SMSVerbatim[" language,"—>source;, write textual form of the source which

into the automatically generated file verbatim

SMSVerbatim|...,"CheckIf"—>False] Since the effect of the
SMSVerbatim statement can not be predicted,

"language,"— >source2,...] corresponds to the currently used program language

some optimization of the code can be prevented by the
"verbatim" statement. With the option "ChecklIf"—>False,
the verbatim code is ignored for the code optimization.

SMSVerbatim[...,"Close"—>False] The SMSVerbatim command automatically
adds a separator character at the end of the code
(.e.g.";" in the case of C++). With the option "Close"—>
False, no character is added.

Input parameters source, source;, source,,... have special form. They can be a single string, or a list of arbitrary
expressions. Expressions can contain auxiliary variables as well. Since some of the characters (e.g. ") are not allowed in

the string we have to use substitution instead accordingly to the table below.

202 AceGen code generator

substitution character
[/ \

/! 1

[/V \||

[/n \n

Character substitution table.

The parameter '"language" can be any of the languages supported by AceGen ("Mathematica",
"Fortran","Fortan90","C","C++",...). It is sufficient to give a rule for the generic form of the language ("Mathematica",
"Fortran","C") (e.g instead of the form for language "Fortran90" we can give the form for language "Fortran").

The source can contain arbitrary program sequences that are syntactically correct for the chosen program language,
however the source is taken verbatim and is neglected during the automatic differentiation procedure.

SMSInitialize["test", "Language" -> "C"];
SMSModule["test"];
SMSVerbatim[
"Fortran" -> {"write(x,*) 'Hello'", "\nstop"}
, "Mathematica" -> {"Print['Hello'];", "\nAbort[];"}
, "C" -> {"printf ('Hello');", "\nexit (0);"}
1;
SMSWrite["test"];

Method : teSt 1 formulae, 2 sub-expressions

[0] File created : teSt e C size : 683

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 15:41:07+*
E R R R SR SR SRS S SRR R SRS SRS R R SRS S E SRR SRS SRR R R R R EREEEEEEEEEEEEEEESEEEES
User : USER

Evaluation time : 0 s Mode : Optimal
Number of formulae : 1 Method: Automatic
Subroutine : test size :2

Total size of Mathematica code : 2 subexpressions

Total size of C code : 122 bytes*/

#include "sms.h"

[xkkkkkkkkkkkkxkxxx* G U B R O UT I N E ***kkxkkkkkkkkkkxkhkkk/
void test(double v[50017])

{

printf("Hello");

exit(0);

}i

AceGen code generator 203

SMSPrint

SMSPrint[exprl expr2,...,options] create a source code sequence that prints out all
the expressions expr; accordingly to the given options

SMSPrint["Message", exprl expr2,...,] = SMSPrint[exprl expr2,..., "Optimal"—>True,

"Output"—>"Console","Condition"—>None]
prints out message to standard output device

option description default

"Output" "Console" =standard output device "Console"
{"File", file} = create a source code
sequence that prints out expressions expr; to file file
(file is in general identified by the file name. For
FORTRAN source codes it can also be
identified by the FORTRAN I/O unit number)

"Optimal" By default the code is included into source code only in False
"Debug" and "Prototype" mode. With the option "Optimal"—
True the source code is always generated.

"Condition" at the run time the print out is actually executed None
only if the given logical expression yields True

General options for the SMSPrint function.

The SMSPrint function is active only in "Debug" and "Prototype" mode while the SMSPrintMessage function
always creates source code.

Expression expr; can be a string constant or an arbitrary AceGen expression. If the chosen language is Mathematica
language or Fortran, then the expression can be of integer, real or string type.

The following restrictions exist for the C language:

> the integer type expression is allowed, but it will be cased into the real type expression;
> the string type constant is allowed and should be of the form "'text'";
> the string type expression is not allowed and will result in compiler error.

Language standard output device ("Console")

"Mathematica" current notebook

"C" console window (printf (...)

"Fortran" console window (write(x,x) ...)

"Matlab" matlab window (disp (...)

204 AceGen code generator

Options description

"Output"—>"File" create a source code sequence that prints
out to the standard output file associated with
the specific numerical environment (if exist)

"Condition"—>"DebugElement" Within some numerical environment there is
an additional possibility to limit the print out. With
the "DebugElement" option the print out is executed
accordingly to the value of the SMTIData["DebugElement"]
environment variable (if applicable):

SMTIData["DebugElement",—1] =
print outs are active for all elements
SMTIData["DebugElement" 0] =
print outs are disabled (default value)
SMTIData["DebugElement",i] =
print out is active for i—th element

Additional values for SMSPrint options for numerical environments (ACEFEM,...).

Example 1: printing out to all output devices - C language

<< AceGen" ;
SMSInitialize["test", "Language" -> "C", "Mode" -» "Prototype"];
SMSModule["test", Real[x$$]1];

SMSPrint["pi=", n];

SMSPrint["time=", SMSTime[], "Output”" -» {"File", "test.out"}];
SMSPrint["e=", E,

"Output" » {"File", "test.out"}, "Condition" -» SMSReal[x$$] > 0];
SMSWrite[];

File: test.c Size: 1063

Methods No.Formulae No.Leafs
test 4 11

AceGen code generator

205

FilePrint["test.c"]

/***

* AceGen 3.301 Windows (27 Dec 11) *
* Co. J. Korelc 2007 27 Dec 11 19:21:48%*
kkhkhkkkhhkkkhkkhkkhkkhkhkkhhkkhhkhhkkhhkhhkkhhkkhhkkhhkkhhkhkhhkkhhkkhhkkhhkkkhkkkdkkk,x*%
User : USER

Notebook : AceGenSymbols.nb

Evaluation time 0 s Mode : Prototype
Number of formulae 4 Method: Automatic

test size :11
11 subexpressions
456 bytes*/

Subroutine

Total size of Mathematica code
Total size of C code

#include "sms.h"

e e se s e

[K kkkkkkkkkkkkxkxxx* G U B R O UT I N E ***kkxkkkkkkkkkkhhkkk/
void test(double v[5001],double (*x))

{

FILE *SMSFile;

printf("\n%s %g ","pi=", (double)0.3141592653589793el);
v[2]=Time();

SMSFile=fopen("test.out","a");if (SMSFile!=NULL) {

fprintf (SMSFile, "\n%s %g ","time=", (double)v[2]);
fclose(SMSFile);};

if((*x)>0e0){

SMSFile=fopen("test.out","a");if (SMSFile!=NULL) {

fprintf (SMSFile,"\n%s %g ","e=", (double)0.2718281828459045el);
fclose(SMSFile);}

}i

}i

Example 2: printing out to all output devices - Fortran language

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran", "Mode" -» "Prototype"];
SMSModule["test", Real[x$$]];

SMSPrint["pi=", n];

SMSPrint["time=", SMSTime[], "Output" -» {"File", "test.out"}];

SMSPrint["e=", E, "Output" » {"File", 4}, "Condition" -» SMSReal[x$$] > 0];
SMSWrite[];

File: test.f Size: 1055

Methods No.Formulae No.Leafs
test 6 15

206

AceGen code generator

FilePrint["test.f"]

1hkkkk
1* Ace
1%

| %% %%
User
Note
Eval
Numb
Subr
Tota
Tota

(BT

Example 3: printin

EEE R SRS SRR SRR RS SRR SRR R LR EREEEEE R R R SRR

Gen 3.301 Windows (27 Dec 11) *
Co. J. Korelc 2007 27 Dec 11 19:21:41%*
kkhkhkkkhhkkkhhkkkhhkhkhkkhhkkhhkkhhkkhhkhhkkhhkkhhkkhhkkhhkkhhkkkhkkkhkkhkhkxk,kx**
: USER
book : AceGenSymbols.nb

uation time : 0 s Mode : Prototype
er of formulae HI) Method: Automatic
outine : test size :15

1 size of Mathematica code : 15 subexpressions

1 size of Fortran code : 451 bytes

*kkhkkkhkkkhkkhkkkhkkkkhkk*k S UBR 0 UTINE ***k*k*kkkkkkkdkkkdkkkkxx

SUBROUTINE test(v,x)
IMPLICIT NONE

include 'sms.h'

DOUBLE PRECISION v(5001),x
write(*,'(a,x,g11.5)"')"pi=",0.3141592653589793d1
v(2)=Time()
OPEN(UNIT=10,FILE="test.out",STATUS="UNKNOWN")
write(10,"'(a,x,gll.5)")"time=",v(2)

CLOSE(10)

IF(X.gt.0d0) THEN
write(4,'(a,x,911.5)')"e=",0.2718281828459045d1
ENDIF

END

g out from numerical environment

<< AceGen" ;

SMSInitialize["test", "Environment" -> "AceFEM-MDriver", "Mode" -» "Prototype"];

SMSTemplate["SMSTopology" -> "T1"];
SMSStandardModule["Tangent and residual"];

SMSPrint["'pi="", n];
SMSPrint["'load="", rdata$$["Multiplier"],
"Output"”" -» "File", "Condition" -> "DebugElement"];

SMSWrite[];

File: test.m Size: 2209

Methods No.Formulae No.Leafs

SMT "~ SKR 2 4
FilePrint["test.m"]

(***

* AceGen 3.301 Windows (27 Dec 11) *
* Co. J. Korelc 2007 27 Dec 11 19:21:56%*
kkhkhkkhkkkkhkkkhkhkhkkhhkkhkhhkhkhkhkhhkhkhkhkhhkhkhhkhkhkhkhkkhkhkhkhhkkhkhkkhkkhkhhkkhkhkhkkhkkkhkkkkx**%x
User : USER

Notebook : AceGenSymbols.nb

Evaluation time : 0s Mode : Prototype
Number of formulae H] Method: Automatic
Module : SMT SKR size : 4

Total size of Mathematica code : 4 subexpressions *)

SMT " SetElSpec|["test",idatas$$,ic_,gd]:=Block[{ql,q2,93,94},
g4=If[ic==-1,12,ic];

g3=SMCMultiIntegration[g4];

gl={"test",

AceGen code generator 207

{"SKR" -> SMT SKR, _ -> Null}
,{"SpecIndex",2,6,0,3,0,
8,

g4, "NoTimeStorage", "NoElementData",q3[[1]1],0,0,1,
a3[[311,93[[411,93[[511,0,0,0,
0,12,0,"NoAdditionalData",
0,0,0,0,0}

I"Tl"I

SMCToMMAString[{}],

SMCToMMAString[{}],

SMCToMMAString[{}],

{1, 2, 3, 0, 1, 2, 3, -1},{2, 2, 2},{},{}

(If[gd==={}, {},9d]

+d3[[2]]1//Transpose, {{1, O, 0}, {0, 1, 0}, {0, O, 1}},

"AdditionalData", "NoNodeStorage", "NoNodeData",{-1, -1, -1},

SMCToMMAString["{}&"],

{"D"r "D"I "D"}I

SMCToMMAString["{}&"],

SMCToMMAString[{}1,

SMCToMMAString[""],

SMCToMMAString[""],

SMCToMMAString[""],

nn
4
nn
14
nn
14
nn

{}/

{}/

{}/

{}I

BT S PR P

{}/

{}/

{}/

{1., 1., 1.},
FromCharacterCode[{}],

{3.301,3.301,8.}

}i

If[gd=!={} && Not[Round[True]]
,SMC~ SMCError={"Given data:",gd, "Required data:"
,SMCToMMAString[{}]};
SMC~ SMCAbort["Incorrect domain input data
values", "SMTAddDomain", "SMTAddDomain"];
1i

ql[[3,9]1]1=Round[0];
ql[[17]]=Round[{Round[qgl[[3,2]]*idataS[[41]]],
Round[qgl[[3,2]]*idata$$[[41]]], Round[ql[[3,2]]*idatasS[[41]]11}];
gl[[16]]=Round[{0, O, 0}];

qgl[[3,10]]=Round[0];

qgl[[3,24]]=Round[0];

gl[[15]]=Array[0.&,Round[0]];

all;

(*********************** MODULE **************************)

SetAttributes[SMT SKR,HoldAll];

SMT SKR["test",es$$_,ed$$_,ns$$_,nd$$_,rdatass_,idatass_
/PSS_,5$$_1:=Module[{},

Print["pi="," ",Pi];

If[idata$$[[65]1]==-1 || idatas[[32]]==idataS[[65]1],

PutAppend[{"load=",rdata$$[[1]]},SMTSession[[10]]]

208 AceGen code generator

1
1

SMSPrintMessage

SMSPrintMessage[exprl expr2,...,] = SMSPrint[exprl expr2,..., "Optimal"—>True,
"Output"—>"Console","Condition"—>None]
prints out message to standard output device

The SMSPrint function is active only in "Debug" and "Prototype" mode while the SMSPrintMessage function
always creates source code.

See also: SMSPrint

Basic Assignments

SMSR

SMSR[symbol,exp] create a new auxiliary variable if introduction of
a new variable is necessary, otherwise symbol=exp

symbol E exp infix form of the SMSR function is
equivalent to the standard form SMSR[symbol,exp]

The SMSR function first evaluates exp. If the result of the evaluation is an elementary expression, then no auxiliary
variables are created and the exp is assigned to be the value of symbol. If the result is not elementary expression, then
AceGen creates a new auxiliary variable, and assigns the new auxiliary variable to be the value of symbol. From then
on, symbol is replaced by the new auxiliary variable whenever it appears. Evaluated expression exp is then stored into
the AceGen data base.

Precedence level of k operator is specified in precedence table below. It has higher precedence than arithmetical
operators like +, -,*/, but lower than postfix operators like // and /., /... . In these cases the parentheses or the standard
form of functions have to be used.

For example, x F a+b/.a->3 statement will cause an error. There are several alternative ways how to enter this expres-
sion correctly. Some of them are:

X E(a+b/.a->3),
x k ReplaceAll[a+b,a->3],
SMSR([x,a+b/.a->3],

x=SMSSimplify[a+b/.a->3].

See also: Mathematica syntax - AceGen syntax, Auxiliary Variables, Expression Optimization

AceGen code generator 209

Extensions of symbol names x_H2.e::5.etc.

Function application variants ele],e@@e etc.
Power-related operators Veeheete.
Multiplication-related operators Ve, ele, e®e , ee, etc.
Addition-related operators e®e e+e.el Jeetc.
Relational operators e==¢.e~e c<e.e<leeceetc.
Arrow and vector operators e—e.e/eesee—leetc.
Logic operators Yee, e&&e, e\e, ere, etc.
AceGen operators SRR

Postfix and rule operators elle ,el.e, ,etc.

Pure function operator e&

Assignment operators e=e.e:=eetC.

Compound expression ee

recedence of AceGen opreators.

Numbers are elementary expressions thus a new auxiliary is created only for expression Sin[5].

SMSInitialize["test", "Language" -» "Fortran"];
SMSModule["sub"];

xkel

Yy ESin[5]

1

Y

SMSV

SMSV|[symbol.exp] create a new auxiliary variable regardless of the contents of exp

symbol F exp an infix form of the SMSR function is
equivalent to the standard form SMSV [symbol exp]

The SMSV function first evaluates exp, then AceGen creates a new auxiliary variable, and assigns the new auxiliary
variable to be the value of symbol. From then on, symbol is replaced by the new auxiliary variable whenever it appears.
Evaluated expression exp is then stored into the AceGen database.

Precedence level of k operator is specified in Mathematica precedence table and described in SMSR.

See also: Mathematica syntax - AceGen syntax, Auxiliary Variables, Expression Optimization

210 AceGen code generator

The new auxiliary variables are created for all expressions.

SMSInitialize["test", "Language" -» "Fortran"];
SMSModule["sub"];

xr1l

y +Sin[5]

x|
Y

SMSM

SMSM[symbol,exp] create a new multi—valued auxiliary variable

symbol 4 exp an infix form of the SMSM function is
equivalent to the standard form SMSM|[symbol,exp]

The primal functionality of this form is to create a variable which will appear more than once on the left-hand side of
equation (multi-valued variables). The SMSM function first evaluates exp, creates a new auxiliary variable, and assigns
the new auxiliary variable to be the value of symbol. From then on, symbol is replaced by a new auxiliary variable
whenever it appears. Evaluated expression exp is then stored into the AceGen database. The new auxiliary variable will
not be created if exp matches one of the functions which create by default a new auxiliary variable. Those functions are
SMSReal, SMSInteger, SMSLogical, SMSFreeze,and SMSFictive. The result of those functions is assigned directly to
the symbol.

Precedence level of k operator is described in SMSR.

See also: Mathematica syntax - AceGen syntax, Auxiliary Variables, Expression Optimization, Program Flow Control

SMSS

SMSS([symbol,exp] anew instance of the previously created multi—
valued auxiliary variable is created

symbol 4 exp this is an infix form of the SMSS function and
is equivalent to the standard form SMSS[symbol,exp]

At the input the value of the symbol has to be a valid multi-valued auxiliary variable (created as a result of functions
like SMSS, SMSM, SMSEndIf, SMSEndDo, etc.). At the output there is a new instance of the i-th auxiliary variable with
the unique signature. SMSS function can be used in connection with the same auxiliary variable as many times as we
wish.

Precedence level of k operator is described in SMSR.

See also: Mathematica syntax - AceGen syntax, Auxiliary Variables, Expression Optimization, Program Flow Control

AceGen code generator 211

Successive use of the 4 and 4 operators will produce several instances of the same variable x.

SMSInitialize["test", "Language" - "Fortran", "Mode" -> "Prototype"];
SMSModule["sub", Real[x$$]];

xa1l

X4x+2

X45x%

SMSExport[x, x$$];
SMSWrite[];

Method : Sub 4 formulae, 16 sub-expressions

[0] File created : teSt ° f Size : 808

FilePrint["test.f"]

IEEEE R R EEEEREREREEEEREREREEREREREREEEEREEEREEREREREEEEEEREREEE R

!* AceGen 2.103 Windows (18 Jul 08) *
1% Co. J. Korelc 2007 18 Jul 08 16:48:31%*
IR S R R
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode : Prototype
4 Method: Automatic
sub size :16

16 subexpressions

244 bytes

o oo

!******************* S U B R o U T I N E **%%*xdkhdkhdhdhdrhrdhrhix
SUBROUTINE sub(V,Xx)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(5001),x
v(1)=1do0
v(1)=2d0+v(1)
v(1)=5d0*v(1l)
x=v(1l)
END

SMSInt

SMSInt[exp] create an integer type auxiliary variable

If an expression contains logical type auxiliary or external variables then the expression is automatically considered as
logical type expression. Similarly, if an expression contains real type auxiliary or external variables then the expression
is automatically considered as real type expression and if it contains only integer type auxiliary variables it is consid-
ered as integer type expression. With the SMSInt function we force the creation of integer type auxiliary variables also
in the case when the expression contains some real type auxiliary variables.

See also: Auxiliary Variables, SMSM.

212

AceGen code generator

SMSSimplify

SMSSimplify[exp] create a new auxiliary variable if the introduction of new variable is necessary,
otherwise the original exp is returned

The SMSSimplify function first evaluates exp. If the result of the evaluation is an elementary expression, then no
auxiliary variables are created and the original exp is the result. If the result is not an elementary expression, then
AceGen creates and returns a new auxiliary variable. SMSSimplify function can appear also as a part of an arbitrary

expression.

See also: Auxiliary Variables, SMSM .

SMSVariables

SMSVariables[exp] gives a list of all auxiliary variables in expression in
the order of appearance and with duplicate elements removed

Example

<< AceGen" " ;
SMSInitialize["test"];

SMSModule["Test", Real[a$$]];

a+ SMSReal[a$$];

Mp(a az)
a2 o

({al, Masl}, {Maa], o]}

SMSVariables [M]

(al, Maul)

Symbolic-numeric Interface

SMSReal

SMSReal[exte] = create real type external data object (SMSExternalF)
with the definition exte and an unique signature

SMSReal[i_List] = Map[SMSReal[H]&i,i]

niroduction of the real type external variables .

AceGen code generator 213

option name default value

"Dependency" True define partial derivatives of external data object
(SMSExternalF) with respect to given auxiliary
variables (for the detailed syntax see SMSFreeze ,
User Defined Functions)

"Subordinate" {} list of auxiliary variables that represent control
structures (e.g. SMSCall, SMSVerbatim, SMSExport)
that have to be executed before the evaluation of
the current expression (see User Defined Functions)

Options for SMSReal.

The SMSReal function does not create a new auxiliary variable. If an auxiliary variable is required, then we have to use
one of the functions that introduces a new auxiliary variable (e.g. rrSMSReal[r$$]). The exte is, for the algebraic
operations like differentiation, taken as independent on any auxiliary variable that might appear as part of exte. The
parts of the exte which have proper form for the external variables are at the end of the session translated into FOR-
TRAN or C format.

By default an unique signature (random high precision real number) is assigned to the SMSExternalF object. If the
numerical evaluation of exte (obtained by N[exte, SMSEvaluatePrecision]) leads to the real type number then the default
signature is calculated by it's perturbation, else the default signature is taken as a real type random number form
interval [0,1]. In some cases user has to provide it's own signature in order to prevent situations where wrong simplifica-
tion of expressions might occur (for mode details see Signatures of the Expressions).

See also: Expression Optimization , Symbolic-Numeric Interface, User Defined Functions

SMSinteger

SMSInteger[exte] = create integer type external data object
(SMSExternalF) with the definition exte and an unique signature

ntroduction of integer type external variables .

option name default value

"Subordinate"—> {} list of auxiliary variables that represent control structures

{vi,va...} (e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression
(User Defined Functions)

"Subordinate" —>v; = "Subordinate"—>{v,}

ptions for SMSInteger.

The SMSInteger function does not create a new auxiliary variable. If an auxiliary variable is required, then we have to
use one of the functions that introduces a new auxiliary variable (e.g. irSMSInteger[i$$]). In order to avoid wrong
simplifications an unique real type signature is assigned to the integer type variables.

See also: SMSReal, Symbolic-Numeric Interface

214 AceGen code generator

SMSLogical

SMSLogical[exte] create logical type external data object with definition exte

option name default value

"Subordinate" —> {} list of auxiliary variables that represent control structures

{(vi,va...} (e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression
(User Defined Functions)

"Subordinate"—>v, = "Subordinate"—>{v,}

ptions for SMSLogical.

Logical expressions are ignored during the simultaneous simplification procedure. The SMSLogical function does not
create a new auxiliary variable. If an auxiliary variable is required, then we have to use one of the functions that
introduces a new auxiliary variable (e.g. brSMSLogical[b$$]).

See also: SMSReal, Symbolic-Numeric Interface

SMSReallList

SMSRealList[{eID ,eID,,...}, array_Function] create a list of real type external data objects that correspoi
to the list of array element identifications {elD ,eID;,...}
and represents consecutive elements of the array

SMSRealList[pattern] gives the real type external data objects that correspond to
elements which array element identification e/D match pat

SMSRealList[pattern,code_String] gives the data accordingly to the code that correspond to
elements which array element identification e/D match pat

ntroduction of the ist of real type external variables .

option name default value
"Description"—>{...} {eID eID,,...} a list of descriptions that corresponds to the

list of array element identifications {elD elD;,...}
"Length"—>/ 1 each array element identification elD; can

also represent a part of array with the given length
"Index"—>i 1 index of the actual array element taken

from the part of array associated with the array

element identification elD; (index starts with 1)
"Signature" {1,1,...} a list of characteristic real type values that corresponds to

the list of array element identifications {eID; ,elD;,...}

ptions for SMSRealList

AceGen code generator

215

code description
"Description” the values of the option "Description”
"Signature" the values of the option "Signature"
"Export" the patterns (e.g. ed$$[5]) suitable
as parameter for SMSExport function
"Length" the accumulated length of all elements which
array element identification e/D match pattern
"ID" array element identifications
"Plain" external data objects with all
auxiliary variables replaced by their definition
"Exist" True if the data with the given pattern exists
"Start" if the external data objects is an array then
the first element of the array (Index=1) with all
auxiliary variables replaced by their definition

eturn codes for SMSRealList.

The SMSRealList commands remembers the number of array elements allocated. When called second time for the
same array the consecutive elements of the array are taken starting from the last element form the first call. The array
element identifications eID is a string that represents the specific element of the array and can be used later on (through
all the AceGen session) to retrieve the element of the array that was originally assigned to elD.

The parameter array is a pure function that returns the i-th element of the array. For the same array it should be always
identical. The definitions x$$[#]& and x$$[#+1]& are considered as different arrays.

See also: SMSReal

Example

<< AceGen"

SMSInitialize["test", "Language" -> "C"];

SMSModule["test", Real[a$$[10], b$$[10], c$$[100]], Integer[LS, i$$]1];

SMSRealList[{"al", "a2"}, a$$[#] &]

{a$$1, as$$2}

SMSRealList[{"a3", "a4"}, aS[#] &]

{a$$3, a$s4}

SMSRealList["a3"]

asss

SMSRealList[{"bl", "b2"}, b$$[#] &, "Length" -» 5, "Index" -» 2]

{b$$2, bS$7}

SMSRealList[{"b3", "b4"}, b$$[#] &, "Length" » 20, "Index" - 4]

{bS$S14, bS$S34}

216 AceGen code generator

The arguments "Length" and "Index" are left unevaluated by the use of Hold function in order to be able to retrieve the same array
elements through all the AceGen session. The actual auxiliary variables assigned to L and i can be different in different subroutines!!

{L, i} e SMSInteger[{L$$, i$$}1;
SMSRealList[{"cl", "c2"}, c$$[#] &, "Length" -» Hold[2 L], "Index" -» Hold[i +1]]

{csshﬂ, C$$1+ﬂ+2ﬂ}

SMSRealList [Array["B", 2], c$$[#] &, "Length" » Hold[L], "Index" -» Hold[i]]

{cssﬂ%ﬂ, cssﬂsﬂ}

TableForm[{SMSRealList["B"[_], "ID"], SMSRealList["B"[_]1],
SMSRealList["B"[_], "Plain"], SMSRealList["B"[_], "Export"]},
TableHeadings -» {{"ID", "AceGen", "Plain", "Export"}, None}]

ID B[1] Bl2]

AceGen C$$ﬂ+4ﬂ C$$ﬂ—5ﬂ

Plain |c$$[(int) [1$$] +4 (int) [L$$]] c$$[(int) [i$$] +5 (int) [L$$]]

Export c$$[ﬂ+4ﬂ} c$$[ﬂ+5ﬂ}

SMSRealList["B"[_], "Length"]

2 (int) [L$$]

SMSExport

SMSExport[exp,ext] export the expression exp to the external variable ext

SMSExport[{expl,exp2,....expN},ext] = SMSExport[{expl,exp2,....expN}, Table[ext[i] {i,1 ,N}]]
export the list of expressions {expl,exp2,...}
to the external array ext formed as Table[ext[i].{i,1 ,N}]

SMSExport[{expl,exp2,....expN}, export the list of expressions {expl,exp2,...}
{extl,ext2,...,ex2N}] to a matching list of the external variables {ext],ext2,...}

SMSExport[exp, ext, "AddIn"—>True] add the value of exp to the
current value of the external variable ext

The expressions that are exported can be any regular expressions. The external variables have to be regular AceGen
external variables. At the end of the session, the external variables are translated into the FORTRAN or C format.

See also: Symbolic-Numeric Interface

AceGen code generator 217

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, y$$, a$$[2], r$$[2, 2]11];
X £ SMSReal [x$$];

SMSExport [x?, y$$];

SMSExport[{1, 2}, a$$];
SMSExport[{3, 4}, {a$$[1], a$$[2]}];
SMSExport[{5, 6}, Table[a$$[i], {i, 1, 2}]];

SMSExport [Table[Sin[i j], {i, 2}, {j, 2}], r$§];
SMSExport [Table[Sin[i j], {i, 2}, {j, 2}], Table[r$$[i, j1, {i, 2}, {i, 2}1];
SMSWrite["test"];

File: test.f Size: 1058
Methods No.Formulae No.Leafs
test 6 40

FilePrint["test.f"]

IEE R R R EEEE R EREREEEEREREREEREREREREEREREEEREEREREREEEEEEREREEE R

!* AceGen 3.001 Windows (8 Mar 11) *
1% Co. J. Korelc 2007 13 Mar 11 19:31:04%*

lhdkhhdhhhdhdhhhdhhhdhhhhdhhdhhhdhhdhhhdhhdhhhdhrhddhhhdhrhdhrhddrhdhrrddx

! User : USER

! Evaluation time : 0s Mode : Optimal

! Number of formulae : 6 Method: Automatic
! Subroutine : test size :40

! Total size of Mathematica code : 40 subexpressions

! Total size of Fortran code : 484 bytes

lhkkkdhkdhkkkkhkkdxkxk** § U B RO UT I NE **kkkhkdhkhhhhkdhhkdhhhhkdrx

SUBROUTINE test(v,Xx,y,a,r)
IMPLICIT NONE

include 'sms.h'

DOUBLE PRECISION v(5001),x,y,a(2),r(2,2)
y=X**2

a(l)=1d0

a(2)=2d0

a(1l)=3d0

a(2)=4d0

a(1l)=5do

a(2)=6d0

r(l,1)=dsin(1d0)
r(l,2)=dsin(2d0)
r(2,1)=dsin(2d0)
r(2,2)=dsin(4d0)
r(l,1)=dsin(1d0)
r(l,2)=dsin(2d0)
r(2,1)=dsin(2d0)
r(2,2)=dsin(4d0)

END

218 AceGen code generator

SMSCall

sc=SMSCall["sub",p;,ps,...] returns auxiliary variable sc that represents the call of external
subroutine sub with the given set of input and output parameters

The name of the subroutine can be arbitrary string. The SMSCall command inserts into the generated source code the
call to the external subroutine "sub" with the given set of input and output parameters.

The input parameters can be arbitrary expressions. Declaration of output parameters and their later use in a program
should follow AceGen rules for the declaration and use of external variables as described in chapter Symbolic-Numeric
Interface (e.g. Real[x$$,"Subordinate"—sc], Integer[i$$[5],"Subordinate"—sc], Logical[b$$,"Subordinate"—sc]). The
input and output arguments are always passed to functions by reference (pointers not values!). The input and output
parameters are defined as local variables of the master subroutine.

The proper order of evaluation of expressions is assured by the "Subordinate"—sc option where the parameter sc is an
auxiliary variable that represents the call of external subroutine. Additionally the partial derivatives of output parame-
ters with respect to input parameters can be defined by the option "Dependency"-

>{ {vl , Jexte } , {vz , Jexte } , } (see also SMSReal).

ovy ov,

More detailed description and examples are given in section User Defined Functions .

option name description default value
"Dependency"—> defines partial derivatives of output {}
{{Vl ‘%’“‘"} {v2 "e’“e} } parameters with respect to input parameters
b 6v] B) 5\/2 9o
"System"—>truefalse the subroutine that is called has been generated by AceGen True
"ArgumentsByValue" By default in AceGen, Automatic
the arguments are passed to subroutine by reference. This
can be changed with "ArgumentsByValue"—>True option.

Options for SMSCall.

AceGen code generator 219

Example

This generates user AceGen module f = Sin(al X+ ayx"2 +a;s x3) with an input parameter x and constants a[3] and the output

. J, & .
parameters y = f(x) and first dy = 7’; and second ddy = 0—{ derivatives.
X

<< AceGen";
SMSInitialize["test", "Language" -» {"Fortran", "C", "Mathematica"}[[2]]];

SMSModule["f", Real[x$$, as$$[3], y$$, dyss$, ddys$s]];
X £ SMSReal [x$$];

{al, a2, a3} SMSReal [Array[a$$, 3]1];
yl:Sin[alx+a2 x? + a3 x3];

dy £ SMSD[y, x];

ddy £ SMSD[y, x];

SMSExport[{y, dy, ddy}, {y$$, dy$$, ddyS}];

SMSModule["main", Real [w$$, r$$]11];

w k SMSReal [wS];

zrw™2;

fo = sMscall["f", z, {1/2,1/3,1/4}, Real[y$$], Real[dy$$], Real[ddyS]];
dfdz2 £ SMSReal [ddy$$, "Subordinate" - fo];

dfdz r SMSReal [dy$$, "Subordinate" -» fo, "Dependency" -> {z, dfdz2}];

f £ SMSReal[y$$, "Subordinate" -» fo, "Dependency" -> {z, dfdz}];

dw = SMSD[f, w];

ddw = SMSD [dw, w];

SMSExport[dd, r$$];

SMSWrite[];

220 AceGen code generator

Smart Assignments

SMSFreeze

SMSFreeze[exp] create data object (SMSFreezeF) that represents expression exp,
however its numerical evaluation yields
an unique signature obtained by the random
perturbation of the original signature of exp

SMSFreeze[exp,generaloptions] create data object (SMSFreezeF) that represents expression
exp accordingly to given general options generaloptions

SMSFreeze[{exp;,exp,,...}, generaloptions] create list of data objects (SMSFreezeF) that represent
expressions {exp,,exp,,...} accordingly to given general
options generaloptions (note that special options that
apply on lists of expressions cannot be used in this form)

SMSFreeze[symbol, create data objects that represent elements of arbitrarily
{exp;.exp,y ...}..}, options] structured list of expressions {exp;,exp, {...}..} accordingly to
given options options. New auxiliary variables with the values
{exp;.exp,.{...}..} and random signature are then generated
and the resulting arbitrarily structured list is then assigned
to symbol symbol.The process can be additionally altered
by special options listed below that are valid only for input
expressions that are arbitrarily structured lists of expressions.

SMSFreeze[symbol, = symbol-SMSFreezelexp,,exp,,...}, generaloptions]
{exp,;,exp,,...}, generaloptions] (note that this is not true
when the special options for lists are used)

mposing restrictions on an optimizafion procedure.

general option default value
"Dependency” False see below
"Contents" False whether to prevent the search for common
sub expressions inside the expression exp
"Code" False whether to keep all options
valid also at the code generation phase
"Differentiation" False whether to use SMSFreeze also
for the derivatives of given expression exp
"Verbatim" False SMSFreeze[exp,"Verbatim"—>True] =
SMSFreeze[exp,"Contents"—>True ,
"Code"—>True , "Differentiation"—>True]
"Subordinate"—>_List {} list of auxiliary variables that represent control structures

(e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression

General options for SMSFreeze.

AceGen code generator 221

option for structured lists default value

"Ignore"—>crit (False&) the SMSFreeze functions is applied only on parts of the list
for which crit[e] yields False (NumberQ[exp] yields True)

"Symmetric" False if an input is a matrix (Symmetric or not)
then the output is a symmetric matrix

"IgnoreNumbers" False = "Ignore"—>NumberQ
whether to apply SMSFreeze functions
only on parts of the list that are not numbers

"KeepStructure" False new auxiliary variables with random signatures
are generated for all parts of the input expression
that have random signatures in a way that the
number of newly introduced auxiliary variables is at
minimum (note that the result of this option might
be dependent on Mathematica or AceGen version)

"Variables" False apply SMSFreeze function on auxiliary
variables that explicitly appear as a part of
expression instead of expression as a whole

pecial options valid for input expressions that are arbitrarily structured lists of expressions.

SMSFreezelexp,"Dependency"—>value)

True assume that SMSFreezeF data object is
independent variable (all partial derivatives of exp are 0)

False assume that SMSFreezeF data object
depends on the same auxiliary variables as
original expression exp (partial derivatives of
SMSFreezeF are the same as partial derivatives of exp)

{{ P1 ,ie—]:]p },{ P2 ,(3::5 },} assume that SMSFreezeF data object
depends on given auxiliary variables py,
D2,... and define the partial derivatives of SMSFreezeF data
object with respect to given auxiliary variables p; py,...

alues for "Dependency” option when the input is a single expression.

222 AceGen code generator

SMSFreezel{exp;exp,, ...},
"Dependency"—>value]

True assume that all expressions are independent
variables (all partial derivatives of exp; are 0)

False assume that after SMSFreeze expressions depend
on the same auxiliary variables as original expressions
2 p) . . o
{p,{% ,% Ve }} define partial derivatives of {exp;,exp,, ...}
P P Jexp, 6exp2
with respect to variable p to be { , .- }
op ap
{ P1. D2, define Jacobian matrix of the transformation from {exp;,exp,....}
ﬂew, ﬂexm Jexp, Jexp, to {p; pa,...} to be matrix {{% Jew, }{% dexp, } }
T R e R SO » i an, > I, P\ ap, C ap,
> dp, ap, ° Ip, Pi P2 Pi)
a a , . . .
{{{Pn, ;pxp },{Pn, ;:p‘ },...}, define arbitrary partial derivatives
12 .
dexp, dexp, of vector of expressions {exp;,exp,,...}
{{le,—a },{Pzz, 2 }, },}
P21 P22

alues for "Dependency™ option when the input is a vector of expressions.

The SMSFreeze function creates SMSFreezeF data object that represents input expression. The numerical value of
resulting SMSFreezeF data object (signature) is calculated by the random perturbation of the numerical value of input
expression (unique signature). The SMSFreeze function can impose various additional restrictions on how expressions
are evaluated, simplified and differentiated (see options).

An unique signature is assigned to exp, thus optimization of exp as a whole is prevented, however AceGen can still
simplify some parts of the expression. The "Contents"->True option prevents the search for common sub expressions
inside the expression.

Original expression is recovered at the end of the session, when the program code is generated and all restrictions are
removed. With the "Code"->True option the restrictions remain valid also in the code generation phase. An exception is
the option "Dependency" which is always removed and true dependencies are restored before the code generation
phase. Similarly the effects of the SMSFreeze function are not inherited for the result of the differentiation. With the
"Differentiation"->True option all restrictions remain valid for the result of the differentiation as well.

With SMSFreeze[exp, "Dependency" —> {{pl, Gexp }, {pz, dexp }, s {p dexp }}] the true dependencies of exp are

ap, ap, " ap,
ignored and it is assumed that exp depends on auxiliary variables py, ..., p,. Partial derivatives of exp with respect to
E)exp ﬂexp E)exp

auxiliary variables p1, ..., p, are taken to be (see also SMSDefineDerivative where the defini-

ap, ’ Op.
tion of the total derivatives of the variables is described).

SMSFreeze[exp,"Verbatim"] stops all automatic simplification procedures.

SMSFreeze function is automatically threaded over the lists that appear as a part of exp.

See also: Exceptions in Differentiation, Auxiliary Variables

Basic Examples

<< AceGen" ;
SMSInitialize["test"];
SMSModule["sub", Real [x$$]];
X £ SMSReal [x$$];

AceGen code generator

223

SMSFreeze creates data object (SMSFreezeF) that contains original expression Sin/x]. New auxiliary variable are not yet

introduced!

SMSFreeze[Sin[x]]

Freeze[sin[ﬁ]]

However, its numerical evaluation yields an unique signature obtained by the random perturbation of the signature of original

expression.

{Sin[x], SMSFreeze[Sin[x]]} // SMSEvaluate

{0.67104233, 0.66222981}

New auxiliary variable that represents original expression can be introduced by

xf r SMSFreeze[Sin[x]];
xf

xf|

or by
SMSFreeze[xf, Sin[x]];
xf
xfl
Options

Options of the SMSFreeze functions are applied on matrix M=

<< AceGen";
SMSInitialize["test"];
SMSModule["sub", Real[x$$]1];
X £ SMSReal [x$$];

x 2x Cos|[x]
M= 2x 2 2x];
-Cos[x] O 1/2

The random signatures of elements of the original matrix are
M // SMSEvaluate // MatrixForm

0.68150910 1.3630182 0.77662292
1.3630182 2.0000000 1.3630182
-0.77662292 0 0.50000000

X
2x

—cos(x)

2x cos(x)
2 2x
0 3

224 AceGen code generator

The SMSFreeze function applied on the whole matrix will create a new auxiliary variable for each element of the matrix regardless
on the structure of the matrix.

Mf + SMSFreeze[M];
Mf // MatrixForm

Mf1:| Mfqis| Mfi3
Mfoa| Mfas| Mfoal
Mfz1| Mfas| Mfas

The random signatures of elements of the original matrix are obtained by perturbation of the random signatures of the elements of
original matrix.

Mf // SMSEvaluate // MatrixForm

0.62543972 1.3144220 0.74021934
1.3511905 1.9694969 1.3127609
-0.73412511 0.00083184279 0.45988398

Here the new auxiliary variables with random signatures are generated only for the elements of the matrix for which NumberQ[x]
yields true. 6 new auxiliary variables are generated.

SMSFreeze [Mf, M, "Ignore" -> NumberQ];
Mf // MatrixForm
Mf // SMSEvaluate // MatrixForm

Mf1a| Mfio| Mfia
Mf> 4 2 Mf>2
Mf=2 4 0 -

0.63975118 1.2659541 0.73419665
1.3304645 2.0000000 1.3240185
-0.71005037 0 0.50000000

Here the new auxiliary variables with random signatures are generated for all parts of the matrix that have random signatures
(numbers do not have random signatures!) in a way that the number of new auxiliary variables is minimum. Only 3 new auxiliary
variables are generated in this case. The properties of the matrix such as symmetry, antisymmetry etc. are preserved when detected.
Note that the symmetry of the matrix is detected accordingly to the signature of the elements of the matrix, thus the detection of the
symmetry is not absolutely guaranteed. When the symmetry or any other property of the matrix is essential for the correctness of
derivation the property has to be enforced explicitly as presented below.

SMSFreeze[Mf, M, "KeepStructure" -> True];

Mf // MatrixForm

Mf // SMSEvaluate // MatrixForm

Mf1:| Mfoa| MFi4f
Mf> 2 2 Mf> 2
- Mf1 2 0 1

2

0.66082676 1.2621213 0.76593957
1.2621213 2.0000000 1.2621213
-0.76593957 0 0.50000000

AceGen code generator 225

Here the new auxiliary variables with random signatures are generated only for the elements of the matrix for which NumberQ[x]
yields true. Additionally, symmetry of the resulting matrix is enforced.

SMSFreeze[Mf, M, "Symmetric" -> True, "Ignore" -> NumberQ];
Mf // MatrixForm

Mf // SMSEvaluate // MatrixForm

Mf1:] Mfsa| Mfaal
Mf’)1| 2 0
Mf21| 0 *;

0.64944950 1.3471358 -0.73228175
1.3471358 2.0000000 0

-0.73228175 0 0.50000000

Here all the auxiliary variables in original expression are replaced by new auxiliary variables with random signatures.

SMSFreeze[Mf, M, "Variables" -> True];
Mf // MatrixForm

Mf // SMSEvaluate // MatrixForm

Fa] 2] cos|Eal]
ZH 2 ZH
~cos[[Eal] o :

0.65690486 1.3138097 0.79188613
1.3138097 2.0000000 1.3138097
-0.79188613 0 0.50000000

Option dependency

<< AceGen" ;

SMSInitialize["test"];
SMSModule["sub", Real[pl$$, p2$S]1];
{pl, p2} = SMSReal [{p1$$, p2S$}];

{el, e2} £ { p1l p2, Sin[pl] Cos[p2]};

Here all partial derivatives of expression el are set to 0 except:

det
apl -

L DLog(el) DLog(el . .) . I
The derivatives {Do—g(e) s Do—g(e)} are then evaluated assuming explicitly defined partial derivatives.
Py P2

f1 + SMSFreeze[el, "Dependency" -> {pl, 5}];
SMSD[Log[£f1], {pl, p2}]

226

AceGen code generator

L DLog(el) DLog(el . .) . R
The derivatives {ﬂ s Do—g(e)} are then evaluated assuming explicitly defined partial derivatives.
P1 P2

f1 + SMSFreeze[el, "Dependency" -> {{pl, 5}, {p2, 10}}];
SMSD [Log[£f1], {pl, p2}]

{m'm}

Here all partial derivatives of expressions el and e2 are set to 0 except:

Oel del

=5,= =10,
apl op2
de2 de2
£2 215, 2 =20.
apl ap2

DLog(el) DLog(el)

. . Dp, Dp,
The derivatives

Dp, Dp,

{f1, £2} + SMSFreeze[{el, e2}, "Dependency" ->
{
{{pl, 5}, {p2, 10}}
. {{p1, 15}, {p2, 20}}
31
SMSD[{Log[fl], Log[£f2]}, {pl, p2}]

{{m' m}' {g, ﬂ}}

. . . . e;
The above result can be also obtained by defining a set of unknowns p; and the Jacobian matrix J; ; = f .
j

{f1, £2} ¢+ SMSFreeze[{el, e2}, "Dependency" ->
{tp1, p2},
{{5, 10}, {15, 20}}

s

SMSD[{Log[f1], Log[f2]}, {pl, pP2}]

Hf—j’ f—j}' {ﬂ' f—j}}

Troubleshooting

Dloge?) Dloge) |2 then evaluated assuming explicitly defined gradients of expressions.

The use of SMSFreeze[exp,options] form of the SMSFreeze function with options Ignore, IgnoreNumbers, Symmetric,
Variables and KeepStructure may lead to unexpected results! Please consider to use SMSFreeze[symbol,exp,options]

form instead.

<< AceGen";
SMSInitialize["test"];
SMSModule["sub", Real[x$$]];
X £ SMSReal [x$$];

AceGen code generator 227

Here the option "IgnoreNumbers" is not accounted for in the final result.

vf + SMSFreeze[{Sin[x], 0}, "Ignore" -> NumberQ];
v
The use of SMSFreeze[exp,options] form of the SMSFreeze
functions with options Ignore, IgnoreNumbers,
Symmetric, KeepStructure and Variables may lead
to unexpected results! Please consider to use
SMSFreeze[symbol,exp,options] form instead.
See also: SMSFree:ze

AR

Correct result is obtained if the SMSFreeze[symbol,exp,options] form is used.

SMSFreeze[vf, {Sin[x], 0}, "Ignore" -> NumberQ];
vE

(Ei, o

SMSFictive

SMSFictive["Type"—> fictive_type] create fictive variable of the
type fictive_type (Real, Integer or Logical)

SMSFictive[] = SMSFictive["Type"—->Real]

efinition of a fictive variable.

A fictive variable is used as a temporary variable to perform various algebraic operations symbolically on AceGen
generated expression (e.g. integration, finding limits, solving algebraic equations symbolically, ...). For example, the

integration variable x in a symbolically evaluated definite integral fab f(x)dx can be introduced as a fictive variable
since it will not appear as a part of the result of integration.
The fictive variable has Auxiliary Variables but it does not have assigned value, thus it must not appear anywhere in a

final source code. The fictive variable that appears as a part of the final code is replaced by random value and a warning
message appears.

See also: Auxiliary Variables, Non-local Operations.

228 AceGen code generator

Example

dg(x)
ox
expression (can be large expression involving If and Do structures). Not that 0 cannot be assigned to x before the differentiation.

Here the pure fictive auxiliary variable is used for x in order to evaluate expression f(n) = 3" | |x=0, Where g(x) is arbitrary

<< AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["sub", Real[£$$, a$$, b$$S], Integer[m$$]];
f£fa10;

SMSDo[n, 1, SMSInteger [m$$], 1, £];

X + SMSFictive[];
X X
ghSin[—] +Cos[—];
n n
f 4 £ + SMSReplaceAll[SMSD[g, x], x -» 0];
SMSEndDo[f];

SMSExport[f, £$$];

SMSWrite[];

File: test.c Size: 835
Methods No.Formulae No.Leafs
sub 3 15

FilePrint["test.c"]

/***

* AceGen 3.304 Windows (7 Jun 12) *
* Co. J. Korelc 2007 8 Jun 12 11:33:43 *
EE R R SR SRS SRS S SR EE SRS SRS EEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEES
User : USER

Notebook : AceGenSymbols.nb

Evaluation time : 0s Mode : Optimal
Number of formulae : 3 Method: Automatic
Subroutine sub size :15

Total size of Mathematica code : 15 subexpressions
Total size of C code : 236 bytes*/
#include "sms.h"

[RrkKkkkkkkkkkkkkkk*k*k S U B R O U T I N E **xkkkkkhhhhhhhhhhhhdhk/

void sub(double v[5005],double (*f),double (*a),double (*b),int (*m))

{
int 1i2;
v[1]=0e0;

for(i2=1;i2<=(int) ((*m));i2++){
v[1l]=1le0/i2+v[1];

};/* end for */

(*£)=v[1];

}i

SMSReplaceAll

See Symbolic Evaluation.

AceGen code generator 229

SMSSmartReduce

SMSSmartReduce[exp,vI|v2|..] replace those parts of the expression exp that do not depend on
any of the auxiliary variables v/|v2|.... by a new auxiliary variable

SMSSmartReduce[exp,vI|v2|...,func] apply pure function func to the sub—
expressions before they are replaced by a new auxiliary variable

The default value for func is identity operator #&. Recommended value is Collect[#,v1Iv2l...]&. The function func
should perform only correctness preserving transformations, so that the value of expression exp remains the same.

See also: Non-local Operations.

SMSSmartRestore

SMSSmartRestore[exp,vi|v2|...] replace those parts of expression exp
that depend on any of the auxiliary variables v/|
v2|.... by their definitions and simplify the result

SMSSmartRestore[exp,vI|v2|..., func] apply pure function func to the sub—
expressions that do not depend on v1|
v2|.. before they are replaced by a new auxiliary variable

SMSSmartRestore[exp, restore expression exp and apply
vI|v2|...{evaluation_rules},func] list of rules {evaluation_rules} to all sub—
expressions that depend on any of auxiliary variables vI,v2,...

At the output, all variables vi/v2/... become fully visible. The result can be used to perform non-local operations. The
default values for func is identity operator #&. Recommended value is Collect[#,v1Iv2|...]&. The function func should
perform only correctness preserving transformations, so that the values of expression remain the same.

The list of rules evaluation_rules can alter the value of exp. It can be used for a symbolic evaluation of expressions (see
Symbolic Evaluation).

The difference between the SMSSmartReduce function and the SMSSmartRestore function is that SMSSmartRestore
function searches the entire database of formulae for the expressions which depend on the given list of auxiliary
variables vy, v, while SMSSmartReduce looks only at parts of the current expression.

The result of the SMSSmartRestore function is a single symbolic expression. If any of auxiliary variable involved has
several definitions (multi-valued auxiliary variables), then the result can not be uniquely defined and the SMSSmartRe-
store function can not be used.

See also: Non-local Operations.

230 AceGen code generator

SMSRestore
SMSRestore[exp,vI|v2|...] replace those parts of expression exp that depend on
any of the auxiliary variables v/|v2|.... by their definitions
SMSRestore[exp, restore expression exp and apply

vI|v2|...{evaluation_rules}] list of rules {evaluation_rules} to all sub—
expressions that depend on any of auxiliary variables vI,v2,..

SMSRestore[exp] replace all visible auxiliary variables in exp by their definition
SMSRestore[exp,"Global"] repeatedly replace all auxiliary variables until only basic

input variables remain (objects such as SMSExternalF,
SMSFreezeF and SMSFictiveF are left intact)

At the output, all variables vI/v2/... become fully visible, the same as in the case of SMSSmartRestore function. How-
ever, while SMSSmartRestore simplifies the result by introducing new auxiliary variables, SMSRestore returns original
expression.

If any of auxiliary variable involved has several definitions (multi-valued auxiliary variables), then the result can not be
uniquely defined and the SMSRestore function can not be used.

See also: Non-local Operations.

Arrays

SMSArray

SMSArray[{expl,exp2,...}] create an SMSGroupF data object that
represents a constant array of expressions {expl, exp2,...}

SMSArray[len] create an SMSArrayF data object that represents a general real type
array of length len and allocate space on the global vector of formulas

SMSArray[len,func] create a multi—valued auxiliary variable that represents a general
array data object of length len, with elements func[i] ,i=1,... len

SMSArray[{n,len}, func] create n multi—valued auxiliary variables
that represents n general array data objects of length len,
with elements { func(i] [1], func[i] [2],....func[i] [n]},i=1,...,len

The SMSArray[{expl.exp2,...}] function returns the SMSGroupF data object. All elements of the array are set to have
given values. If an array is required as auxiliary variable then we have to use one of the functions that introduces a new
auxiliary variable (e.g. r=SMSArray({1,2,3,4}]).

The SMSArray[len] function returns the SMSArrayF data object. The elements of the array have no default values. The
SMSArrayF object HAS TO BE introduced as a new multi-valued auxiliary variable (e.g. r4SMSArray[10]). The value
of the i-th element of the array can be set or changed by the SMSReplacePart[array, new value, i] command.

The SMSArray[len func] function returns a multi-valued auxiliary variable that points at the SMSArrayF data object.
The elements of the array are set to the values returned by the function func. Function func has to return a representative
formula valid for the arbitrary element of the array.

The SMSArray[{n,len} func] function returns n multi-valued auxiliary variables that points at the nth SMSArrayF data
objects. The elements of the array are set to the values returned by the function func. Function func has to return n
representative formulae valid for the arbitrary elements of the arrays.

A constant array is represented in the final source code as a sequence of auxiliary variables and formulae. Definition of
the general array only allocates space on the global vector. Constant array is represented by the data object with the

AceGen code generator 231

head SMSGroupF (AceGen arrayi object). Thégeneral array data object has head SMSArrdyF . An array data object
represents an array together with the information regarding random evaluation. Reference to the particular or an
arbitrary element of the array is represented by the data object with the head SMSIndexF (AceGen index object).

See also:Arrays, SMSPart, Characteristic Formulae, SMSReplacePart.

SMSPart

SMSPart[{expl, exp2,...},index] create an index data object that represents the index
—th element of the array of expressions {expl, exp2,...}

SMSPart[arrayo,index] create an index data object that represents the index
—th element of the array of expressions
represented by the array data object arrayo

The argument arrayo is an array data object defined by SMSArray function or an auxiliary variable that represents an
array data object. The argument index is an arbitrary integer type expression. During the AceGen sessions the actual
value of the index is not known, only later, at the evaluation time of the program, the actual value of the index becomes
known. Consequently, AceGen assigns a new signature to the index data object in order to prevent false simplifications.
The values are calculated as perturbated mean values of the expressions that form the array.

The SMSPart function does not create a new auxiliary variable. If an arbitrary element of the array is required as an

auxiliary variable, then we have to use one of the functions that introduces a new auxiliary variable (e.g. r+
SMSPart[{1,2,3,4},i]).

See also: Arrays.

SMSInitialize["test"];

SMSModule["test", Real[x$$, r$$], Integer[i$$]];
X £ SMSReal [x$$]; i r SMSInteger[i$$];

g kE SMSArray[{x, x~2, 0, m}];

gi r SMSPart[g, i];

SMSExport[gi, r$$];

SMSWrite["test"];

Method : teSt 2 formulae, 29 sub-expressions

[0] File created : teSt oIl size : 726

232

AceGen code generator

FilePrint["test.m"]

(***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 15:41:16*
kkhkhkkkhhkkkhkkhkkhkkhkhkkhhkkhhkhhkkhhkhhkkhhkkhhkkhhkkhhkhkhhkkhhkkhhkkhhkkkhkkkdkkk,x*%
User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae H Method: Automatic
Module : test size : 29

Total size of Mathematica code : 29 subexpressions *)
(*********************** MODULE **************************)
SetAttributes[test,HoldAll];

test[x$$_,r$$_,i$$_]:=Module[{},

SVV[5000]=xS$S;

SVV[5001]1=x$$"2;

$VV[5002]1=0;

SVV[5003]=Pi;

r$$=$VV[Round[4999+i$S$]];

1i

SMSReplacePart

SMSReplacePart[array,new,i] set i —th element of the array to be equal new
(array has to be an auxiliary variable that represents a general array data object)

See also: Arrays, SMSArray , SMSPart

SMSDot

SMSDot[arrayo, .arrayo,] dot product of the two arrays of expressions

represented by the array data objects arrayo, and arrayo,

The arguments are the array data objects (see Arrays). The signature of the dot product is a dot product of the signatures
of the array components.

See also: Arrays, SMSArray , SMSPart

SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, r$$11];

X E SMSReal [x$$];

gl £ SMSArray[{x, x*2, 0, «}];

g2 £ SMSArray[{3x, 1+x"2, Sin[x], Cos[x7m]}];
dot r SMSDot [gl, g2];

SMSExport[dot, r$$];

SMSWrite["test"];

Method : teSt 4 formulae, 57 sub-expressions

[0] File created : teSt e C size : 911

AceGen code generator 233

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 15:41:17*
R R R R R R R R R R R R R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
User : USER
Evaluation time
Number of formulae

0 s Mode : Optimal
4 Method: Automatic

s es es e

Subroutine test size :57
Total size of Mathematica code 57 subexpressions
Total size of C code : 340 bytes*/

#include "sms.h"

[xkkkkkkkkkkkkxkxxx* G U B R O UT I NE ***kkxxkkkkkkkkkxkhkkkx/
void test(double v[5009],double (*x),double (*r))
{

v[3]=Power((*x),2);

v[5004]1=3e0*(*x);

v[5005]=1e0+v([3];

v[5006]=sin((*x));
v[5007]=cos(0.3141592653589793el*(*x));
v[5000]=(*x);

v[5001]1=v([3];

v[5002]1=0e0;

v[5003]=0.3141592653589793e1l;

(*r)=SMSDot (&v[5000],&v[5004]1,4);

}i

SMSSum

SMSSumlarrayo] sum of all elements of the array represented by an array data object arrayo

The argument is an array data object that represents an array of expressions (see Arrays). The signature of the result is
sum of the signatures of the array components.

See also: Arrays, SMSArray , SMSPart

Differentiation

SMSD

See: Automatic Differentiation

234 AceGen code generator

SMSDefineDerivative

SMSDefineDerivative[v, z, exp] define the derivative of auxiliary variable
v with respect to auxiliary variable z to be exp
v

5, =P

SMSDefineDerivative[v, {z;,22,..., zv}, D] define gradient of auxiliary variable v with respect to variables

[Z] . 9z: .
{z1, z2, ...,znv} to be vector D:={—V } ..i=1,2,...,N and set = =§".
0z dz;

SMSDefineDerivative[define the derivatives of the auxiliary variables
i, va,ovmd, 2, 4dr dy . dw}] {v1,v2,...,vm} With respect to variable z to be %Vzi =d;

SMSDefineDerivative[define a Jacobian matrix of the transformation from
. v, .
i,va,ovmh Azze, s anh J1 (), va, vy} to {2, 22, ..z} to be matrix J.':[a—:‘] =l
i

Cil 9% _si
2,..M; j=12,..,N, and set 31_—6’]»

J

The SMSDefineDerivative function should be used cautiously since derivatives are defined permanently and globally.
The "Dependency" option of the SMSFreeze, SMSReal and SMSD function should be used instead whenever possible.

TO BE USED ONLY BY THE ADVANCED USERS!!

See also: Automatic Differentiation, Exceptions in Differentiation , SMSFreeze .

In the case of coordinate transformations we usually first define variables z; in terms of variables v; as z; = f,-(v j). Partial

I ; . : af 17! N . I . .
derivatives Z—:' are then defined by [Z—:] = [a_j:k] . The definition of partial derivatives g—: will make independent
j j 1 j
. . ; af; ; D i
variables z; dependent, leading to Z—? = Z‘k% ‘;—Zk #0}. Correct result j—j =0} 1s obtained by defining additional partial
J k J J

derivatives with
sMSDefineDerivative[{z;, .., 2y}, {21, .., 2y}, IdentityMatrix[N]]
This is by default done automatically. This automatic correction can also be suppressed as follows

SsMsDefineDerivative[{v;, .., v}, {Zi1, .., 2y}, J, False]

AceGen code generator 235

Program Flow Control

SMSIf

SMSIf[condition, t, f] creates code that evaluates ¢ if condition evaluates to True,
and f if it evaluates to False and returns the auxiliary
variable that during the AceGen session represents both options

SMSIf[condition, t] creates code that evaluates ¢ if condition evaluates to True

SMSIf[condition, t, the created code is inserted before the given position where pos is:
f,"InsertBefore"— pos] False =
insert code at the current position (also the default value of the option)
Automatic = insert code after the position of the last
auxiliary variable referenced by 7 or f
counter = insert code before the Do loop with the counter counter
var = insert code after the position of the given auxiliary variable var

yntax of the "in-cell" If construct.

The "in-cell" form of the SMSIf construct is a direct equivalent of the standard If statement. The condition of "If"
construct is a logical statement. The in-cell form of the SMSIf command returns multi-valued auxiliary variable with
random signature that represents both options. If 7 or f evaluates to Null then SMSIf returns Null. If ¢ and f evaluate to
vectors of the same length then SMSIf returns a corresponding vector of multi-valued auxiliary variables.

Warning: The "==" operator has to be used for comparing expressions. In this case the actual comparison will be
performed at the run time of the generated code. The "===" operator checks exact syntactical correspondence between
expressions and is executed in Mathematica at the code derivation time and not at the code run time.

See also: Mathematica syntax - AceGen syntax , Program Flow Control , Auxiliary Variables, Signatures of the
Expressions

SMSlIf[condition] starts the TRUE branch of the if .. else .. endif construct
SMSElse[] starts the FALSE branch of the if .. else .. endif construct
SMSEndIf[] ends the if .. else .. endif construct

SMSEndIf[out_var] ends the if .. else .. endif construct and create
fictive instances of the out_var auxiliary variables
with the random values taken as perturbated
average values of all already defined instances

SMSEndIf[True, out_var] creates fictive instances of the out_var auxiliary variables
with the random values taken as perturbated values of the
instances defined in TRUE branch of the "If" construct

SMSEndIf[False, out_var] creates fictive instances of the out_var auxiliary variables
with the random values taken as perturbated values of the
instances defined in FALSE branch of the "If" construct

yntax of the "cross-cell" If construct.

Formulae entered in between SMSIf and SMSElse will be evaluated if the logical expression condition evaluates to
True. Formulae entered in between SMSElse and SMSEndIf will be evaluated if the logical expression evaluates to
False. The SMSElse statement is not obligatory. New instances and new signatures are assigned to the out_var auxiliary
variables. The out_var parameter can be a symbol or a list of symbols. The values of the symbols have to be multi-
valued auxiliary variables. The cross-cell form of the SMSIf command returns the logical auxiliary variable where the
condition is stored. The SMSElse command also returns the logical auxiliary variable where the condition is stored. The

236 AceGen code generator

SMSEndIf command returns new instances of the out_var auiiliary variables or empty list. New instances have to be
created for all auxiliary variables defined inside the "If" construct that are used also outside the "If" construct.

Example 1: Generic example (in-cell)

Generation of the Fortran subroutine which evaluates the following function
2
oo ={

x<=0 x
x>0 Sin[x] "

This initializes the AceGen system and starts the description of the "test" subroutine.

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$1];

X F SMSReal [x$$];

fe SMSIf[x <=0, x%, Sin[x]];

SMSExport[f, £$$];

SMSWrite["test"];

FilePrint["test.f"]

Method : 1:63551: 3 formulae, 16 sub-expressions

[0] File created : test.f si:e: 561

IEE R R R EEEEEEREEEEEEREREREEREREREREEREREEEREEREREREEEEEEREREE S

!* AceGen 2.103 Windows (18 Jul 08) *
1% Co. J. Korelc 2007 18 Jul 08 15:41:18%*
I hdhhkdhhdrdhhkdhddhdhhdhhddhhdhdhhkddhddddhdhddhdddrddrdddhdddhddrdhdrdddkdx*
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode : Optimal

3 Method: Automatic
test size :16

16 subexpressions

295 bytes

!******************* S UBROUTTINE **%%xkkkkhdhhhdhrhhrhdix
SUBROUTINE test(v,x,f)
IMPLICIT NONE
include 'sms.h'

LOGICAL b2

DOUBLE PRECISION v(5001),x,f
IF(xX.le.0d0) THEN

V(3)=x**2

ELSE

v(3)=dsin(x)

ENDIF

f=v(3)

END

Example 2: Incorrect logical expression

The expression x<=0 && i==="0" in this example is evaluated already in Mathematica because the === operator
always yields True or False. The correct form of the logical condition would be x<=0 && i=="0".

AceGen code generator 237

<< AceGen";

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$], Integer[i$$]];
X £ SMSReal [xS];

£rSMSIf[x <=0 && i ==="0", x?, Sin[x]];
SMSExport[f, £$$];

SMSWrite[];

The expressions of the form a===b or a=!=b in
Hold[x < 0&& i === 0] are evaluated in
Mathematica and not later in the source code !!!
Consider using a==b or a!=b instead. See also: SMSIf

Method : teSt 1 formulae, 7 sub-expressions

[0] File created : teSt ° f Size : 774

FilePrint["test.f"]

ldhdkhhdhhhhhhhdhhhdhhhhdhhdhhhdhhdhhhhhhdhhhdrhdhhhdhhdhrhddrhdhrhddx

!* AceGen 2.103 Windows (18 Jul 08) *
1 * Co. J. Korelc 2007 18 Jul 08 15:41:19%*
!**
! User : USER
Evaluation time
Number of formulae

! 0 s Mode : Optimal
]

! Subroutine

|

|

1 Method: Automatic
test size :7

7 subexpressions

215 bytes

Total size of Mathematica code
Total size of Fortran code

I kkkkhkkkkkkkkxk*x*k*%%* S U B R O U T I NE **kkkkkhhrhhhhhhhhhrhx

SUBROUTINE test(v,x,f,i)
IMPLICIT NONE

include 'sms.h'

INTEGER i

DOUBLE PRECISION v(5001),x,f
f=dsin(x)

END

Example 3: Generic example (cross-cell)

Generation of the Fortran subroutine which evaluates the following function

x<=0 12
f(x):{x>o Sin[x] °

This initializes the AceGen system and starts the description of the "test" subroutine.

<< AceGen" ;

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$]11];

X £ SMSReal [xS];

Description of the cross-cell "If" construct.

SMSIf[x <= 0]

ﬂso

238

AceGen code generator

fax

SMSElse[]

)d <0

f48in[x];

SMSEndIf[f]

af]

SMSExport[f, £$$];
SMSWrite["test"];

Method : 1263551: 3 formulae, 16 sub-expressions

[0] File created : teSt ° f Size : 861

This displays the contents of the generated file.

FilePrint["test.f"]

lhdkhhdhhhdhdhhhdhhhdhhhhdhhhdhhhdhhdhhhdhhdhhhdhrhdhhhdhrhdrhddrhdhrrddx

!* AceGen 2.103 Windows (18 Jul 08)
Co. J. Korelc 2007 18 Jul 08 15:41:19*
IEE R R R R S R R R R R R R R R R R R R R R R RS R R R R R RS R R R

1%

User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

s ee e s e

295 bytes

0 s Mode
3 Method: Automatic
test size :16

16 subexpressions

*

: Optimal

I kkkkhkkkkkkkkxk*k*k*%%* S U B R O U T I NE **kkkkhhhrhhhhhhhhhrhx

SUBROUTINE test(v,x,f)
IMPLICIT NONE

include 'sms.h'
LOGICAL b2

DOUBLE PRECISION v(5001),x,f
IF(x.le.0d0) THEN
v(3)=x**2

ELSE

v(3)=dsin(x)

ENDIF

f=v(3)

END

Example 4: Incorrect use of the "If" structure

Generation of the Fortran subroutine which evaluates the following function

f(X)={

x<=0
x>0 Sin[x] "

2

X

Symbol f appears also outside the "If" construct. Since f is not specified in the SMSEndIf statement, we get "variable
out of scope" error message.

AceGen code generator 239

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$1];
X £ SMSReal [xS];
SMSIf[x <=0];
fa xz;
SMSElse[];
f48Sin[x];
SMSEndIf[];
SMSExport[f, £$$];

Some of the auxilirary variables

in expression are defined out of
the scope of the current position.

Module: test Description: Error in user input parameters for function:
SMSExport

Input parameter: {ﬂ} Current scope: {}

Misplaced variables :

7_f| = $V[3, 2] Scope: If—False{ﬁ < O}

Events: 0
Version: 3.001 Windows (1 Mar 11) (MMA 7.)
See also: Auxiliary Variables AceGen Troubleshooting

SMC::Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSExport .

SAborted

By combining "if" construct and multivalued auxiliary variables the arbitrary program flow can be generated. When
automatic differentiation interacts with the arbitrary program structure a lot of redundant code can be generated. If the
construct appears inside the loop, then some indirect dependencies can appear and all branches have to be considered
for differentiation. The user is strongly encouraged to keep "if" constructs as simple as possible and to avoid redundant
dependencies.

Example 5: Unnecessary dependencies
Generation of the C subroutine which evaluates derivative of f with respect to x.

x=0 x?

ﬂ@:{x>0 Sin[x]

The first input given below leads to the construction of redundant code. The second differentiation involves f that is
also defined in the first "if" construct, so the possibility that the first "if" was executed and that somehow effects the
second one has to be considered. This redundant dependency is avoided in the second input by the use of temporary
variable #mp and leading to much shorter code.

240

AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "C"];
SMSModule["test", Real[x$$, £$$, dSSS]1];
X £ SMSReal [x$$];
SMSIf[x <=0];
fa xz;
da1SMSD[f, x];
SMSEndIf[£f, d];
SMSIf[x > 0];
f418Sin[x];
d41SMSD[f, x];
SMSEndIf[f, d];
SMSExport [{£f, d}, {£$$, d$$}];
SMSWrite[]

Method : 1:63551: 7 formulae, 39 sub-expressions

[0] File created : teSt e C size : 931

0.471

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 02:35:50*
E R R R SR SRS RS S SRR R SRS SRS SRS R SRS S E SRR SRS SRR R SR EE SRR EEEEEEEEEEESEEEES
User : USER
Evaluation time
Number of formulae

0 s Mode : Optimal
7 Method: Automatic

Subroutine test size :39
Total size of Mathematica code 39 subexpressions
Total size of C code : 351 bytes*/

#include "sms.h"

[Hhrkkkkkkxkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkkhkkkkkkk/
void test(double v[5001],double (*x),double (*f),double (*d))
{
int b2,b6,b7;
b2=(*x)<=0e0;
if(b2){
v[3]=Power((*x),2);
v[5]=2e0*(*x);
} else {
b
if((*x)>0e0){
if(b2){
v[8]1=2e0*(*x);
} else {
}i
v[8]=cos((*x));
v[3]=sin((*x));
v[5]1=v[8];
} else {
}i
(*£)=v[3];
(*d)=v[5];
}i

AceGen code generator 241

SMSInitialize["test", "Language" -> "C", "Mode" -> "Optimal"];
SMSModule["test", Real [x$$, £$$, dSS]1];
X £ SMSReal [x$$];
SMSIf[x <=0];

fa xz;

da1SMSD[f, x];
SMSEndIf[f, d];
SMSIf[x > 0];

tmp = Sin[x];

f 4 tmp;

d 4 SMSD [tmp, x];
SMSEndIf[f, d];
SMSExport [{f, d}, {£$$, d$$}]1;
SMSWrite[]

Method : 1:63551: 5 formulae, 30 sub-expressions

[0] File created : teSt e C size : 863

0.361

FilePrint["test.c"]

/***

* AceGen 2.103 Windows (18 Jul 08) *
* Co. J. Korelc 2007 18 Jul 08 02:35:51+*
E R R R SR SRS RS S SRR R SRS SRS SRS R SRS S E SRR SRS SRR R SR EE SRR EEEEEEEEEEESEEEES
User : USER

Evaluation time : 0 s Mode : Optimal
Number of formulae : 5 Method: Automatic
Subroutine : test size :30

Total size of Mathematica code : 30 subexpressions

Total size of C code : 289 bytes*/

#include "sms.h"

[Hhrkkkkkkxkkkkkkkkxx S U B R O UT I NE **xkkkkkkkkhkkhkkkkkkk/
void test(double v[5001],double (*x),double (*f),double (*d))
{

int b2,b6;

if((*x)<=0e0){

v[3]=Power((*x),2);

v[5]=2e0*(*x);

} else {

b

if((*x)>0e0){

v[3]=sin((*x));

v[5]=cos((*x));

} else {

}i

(*£)=v[3];

(*d)=v[5];

}i

SMSElse

See:SMSIf.

242 AceGen code generator

SMSEnNdIf

See:SMSIf.

SMSSwitch

SMSSwitch[expr,form,, Creates code that evaluates expr,

valuey,form, value,,...] then compares it with each of the form; in turn,
evaluating and returning the value; corresponding to the first
match found. The value returned during the AceGen session
represents all options (see also: Program Flow Control).

SMSSwitch[expr, form, value,, If the last form; is the pattern _, then the corresponding
Sform, value, ..., default value] value; is always returned if this case is reached.

yntax of the SMSSwitch construct.

The SMSSwitch construct is a direct equivalent of the standard Switch statement. The expr and the form; are integer

type expressions. The SMSSwitch command returns multi-valued auxiliary variable with random signature that repre-
sents all options. If all value; evaluates to Null then SMSSwitch returns Null. If all value; evaluate to vectors of the
same length then SMSSwitch returns a corresponding vector of multi-valued auxiliary variables.

Warning: If none of the form; match expr, the SMSSwitch returns arbitrary value.

See also: Mathematica syntax - AceGen syntax , Program Flow Control

SMSWhich

SMSWhich|test; value; test, value,,...] Creates code that evaluates each of the fest; in turn,
returning the value of the value; corresponding to the first
one that yields True. The value returned during the AceGen
session represents all options (see also: Program Flow Control).

SMSWhich([test| ,value test,, If the last test; is True, then the corresponding
value, ..., True, default_value] value; is always returned if this case is reached.

yntax of the SMSWhich construct.

The SMSWhich construct is a direct equivalent of the standard Which statement. The test; are logical expressions. The
SMSWhich command returns multi-valued auxiliary variable with random signature that represents all options. If all
value; evaluates to Null then SMSWhich returns Null. If all value; evaluate to vectors of the same length then
SMSWhich returns a corresponding vector of multi-valued auxiliary variables.

Warning: If none of the fest; evaluates to True, the SMSWhich returns arbitrary value.

Warning: The "==" operator has to be used for comparing expressions. In this case the actual comparison will be
performed at the run time of the generated code. The "===" operator checks exact syntactical correspondence between

expressions and is executed in Mathematica at the code derivation time and not at the code run time.

See also: Mathematica syntax - AceGen syntax , Program Flow Control

AceGen code generator

243

SMSDo

SMSDolexpr {i, imin, imax» di}]

SMSDol[expr {imax}]
SMSDO[EXPF,{i, Imins Umax)]

SMSDolexpr,
{i’ imin’ imam dl; in_out _VClV}]

SMSDolexpr,
{i, iin» Lnax» di, in_var,out_var})

create code that evaluates expr with the variable i
successively taking on the values i,,;, through i,,,, in steps of di

= SMSDo[expr{i, 1, imax, 1}]
= SMSDolexpr,{i, imin» imaxs 1}]
create code that in evaluates expr with the variable i successively taking on the v:

imin through ., in steps of di and define input/output in_out _var variables of th

create code that in evaluates expr with the variable i
successively taking on the values i,,;, through i, in steps of di
and define input in_var and output out_var variables of the loop

yntax of the "in-cell" loop construct.

SMSDOVi, imins imax)

SMSDO[i, imin, ima)n di]

SMSDoli, imins imax, di, in_var]

SMSEndDo[]
SMSEndDo[out_var]

start the "Do" loop with an auxiliary variable v
successively taken on the values i,,;, through i,,;, (in steps of 1)

start the "Do" loop with an auxiliary variable v
successively taken on the values i, through i,,, in steps of di

start the "Do" loop with an auxiliary variable v successively taken on the values
through i, in steps of di and create fictive instances of the in_var auxiliary vari
end the loop

end the loop and create fictive instances of the out_var auxiliary variables

yntax of the "cross-cell" loop construct.

Optimization procedures (see Expression Optimization) require that a new instance with the random signature have to

be created for:

> all auxiliary variables that are imported into the loop and have values changed inside the loop (in_var and

in_out _var),

= all variables that are defined inside the loop and used outside the loop (out_var and in_out _var).

New instances with random signature are assigned to the in_var and in_out _var variables at the start of the loop and to
the out_var and in_out _var auxiliary variables at the end of the loop. The "in-cell" form of SMSDo command returns
new instances of the init_out _var auxiliary variables or empty list. The "cross-cell" form of SMSDo command returns
new instances of the in_var auxiliary variables or empty list. The SMSEndDo command returns new instances of the
out_var variables or empty list.

The in_var, out_var and in_out _var parameters can be a symbol or a list of symbols. The values of the symbols have
to be multi-valued auxiliary variables. The iteration variable of the "Do" loop is an integer type auxiliary variable (i).

See also: Mathematica syntax - AceGen syntax , Program Flow Control , Auxiliary Variables, Signatures of the

Expressions

Example 1: Generic example (in-cell)

Generation of the Fortran subroutine which evaluates the following sum f(x) = 1 + >, x'.

244

AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$], Integer[n$$]];
x £ SMSReal[x$$]; n F SMSInteger[n$$];
fal;
sMsDo |
f4f-+xi;
, {i, 1, n, 1,f}];
SMSExport[f, £$$];
SMSWrite["test"];
FilePrint["test.f"]

Method : t:GBE;i: 4 formulae, 23 sub-expressions

[0] File created : teSt ° f Size : 867

lhdkkhdhhhdhdhhhdhhhdhdhhhdhhddhhhdhhddhhhdhhdhhddhhddhhrddhrhdhrrddrhddrrdhdr

I* AceGen 2.103 Windows (17 Jul 08) *
1% Co. J. Korelc 2007 18 Jul 08 00:47:03%*
lhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhhhdhhdhhdhhhhdhkhdhkhdhkhdhkhdhkrdhkrdhkrdhkrdkrhkrkk*
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode : Optimal

4 Method: Automatic
test size :23

23 subexpressions

301 bytes

e es es ee ee

!******************* S U B R o U T I N E ERE R R R SRR R SRS EEEEE SRS E S
SUBROUTINE test(v,x,f,n)
IMPLICIT NONE
include 'sms.h'

INTEGER n,i2,i4

DOUBLE PRECISION v(5005),x,f
i2=int(n)

v(3)=1d0

DO i4=1,i2

v(3)=v(3)+x**xid

ENDDO

f=v(3)

END

Example 2: Generic example (cross-cell)

Generation of the Fortran subroutine which evaluates the following sum f(x) = 1 + Y, x'.

This initializes the AceGen system and starts the description of the "test" subroutine.

<< AceGen" ;

SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[x$$, £$$], Integer[nS]];
X E SMSReal [x$$]; n k SMSInteger[n$$];

AceGen code generator

245

Description of the loop.

fal;
SMSDo[i, 1, n, 1, £];
f-|f+xi;

SMSEndDo[f] ;

This assigns the result to the output parameter of the subroutine and generates file "test.for".

SMSExport[£f, £$$];
SMSWrite["test"];

File: test.f Size:

867

test 4 23

Methods No.Formulae No.Leafs

This displays the contents of the generated file.

FilePrint["test.f"]

lhdkkhhhhhhhkhdhhhdhhhhhhhdhhhdhhhdhhhhhhhdhhddhhddhrddrrhdhrddrrdrrddr

1* AceGen
1* Co. J. Korelc

2.502 Windows (24 Nov 10) *

2007 25 Nov 10 12:56:07%*

IEEEEEEEE LS E SRS S SR SRR LS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ST

User : USER

Evaluation time

Number of formulae
Subroutine

Total size of Mathematica

Total size of Fortran code

: 0s Mode : Optimal
: 4 Method: Automatic
: test size :23
code : 23 subexpressions
: 301 bytes

lhkdhkdhkdhhkkhkkhkkdxdkxd k% * § U B R O UT I N E ** kkdhkdhkhhhhhdhhdhhhhdrx

SUBROUTINE test(v,x,f,

IMPLICIT NONE
include 'sms.h'
INTEGER n,i2,i4

n)

DOUBLE PRECISION v(5005),x,f

i2=int(n)
v(3)=1d0

DO i4=1,1i2
v(3)=v(3)+x**id
ENDDO

f=v(3)

END

Example 3: Incorrect and correct use of "Do" construct

Generation of Fortran subroutine which evaluates the n-th term of the following series So =0, S, = Cos S,_; .

Incorrect formulation

Since the signature of the S variable is not random at the beginning of the loop, AceGen makes wrong simplification

and the resulting code is incorrect.

246 AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran", "Mode" -» "Optimal"];
SMSModule["test", Real[S$$], Integer[nS]];
n k SMSInteger[n$$];
Sa0;
SMSDo[i, 1, n, 1];
S4Cos[S];
SMSEndDo[S];
SMSExport[S, S$$];
SMSWrite["test"];

In the expression of the form x:=f(x), x appearst to have

a constant value. x=;jﬂ value=0 See also: SMSS

File: test.f Size: 856
Methods No.Formulae No.Leafs
test 4 12

FilePrint["test.f"]

lhdkkhhhhhhhkhdhhhdhhhhhhhdhhhdhhhdhhhdhhhdhhhhdhdhdhrddrhdhrddrrdrrddr

!* AceGen 2.502 Windows (24 Nov 10) *
I * Co. J. Korelc 2007 25 Nov 10 12:55:47%*
IEEEEE SRR R SRR RS R SRR R R R SRR R E R R R R R R R EEEEEEEEEEEEEEEREEEEREREEEEEES]
User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae : 4 Method: Automatic
Subroutine : test size :12

Total size of Mathematica code : 12 subexpressions

Total size of Fortran code : 290 bytes

!******************* S U B R O U T I N E **%%kkkkhkhkhkhkhhhhhhhhhhkrk
SUBROUTINE test(v,S,n)
IMPLICIT NONE
include 'sms.h'

INTEGER n,il,i3

DOUBLE PRECISION v(5005),S
il=int(n)

v(2)=0d0

DO i3=1,il

v(2)=1d0

ENDDO

S=v(2)

END

Correct formulation

Assigning a random signature the S auxiliary variable prevents wrong simplification and leads to the correct code.

AceGen code generator 247

SMSInitialize["test", "Language" -> "Fortran", "Mode" -» "Optimal"];
SMSModule["test", Real[S$$], Integer[nS]];
n k SMSInteger[n$$];
Sa0;
SMSDbo[i, 1, n, 1, S];
S4Cos[S];
SMSEndDo[S];
SMSExport[S, S$$1];
SMSWrite["test"];
FilePrint["test.f"]

File: test.f Size: 863
Methods No.Formulae No.Leafs
test 4 15

lhdkkhdhhhdhhhhdhhhdhhhhhhhdhhhdhhddhhdhhhhdhhhdhhdhrddhhdrrddrrdrrddx

!* AceGen 2.502 Windows (24 Nov 10) *
1% Co. J. Korelc 2007 25 Nov 10 12:55:47%*
Il hhhhhhhhhhhhhhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhkhdhkhdhkhdhkhdkhdkrd,*,**
User : USER

Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of Fortran code

0 s Mode : Optimal

4 Method: Automatic
test size :15

15 subexpressions

297 bytes

e ee ee ee ee

!******************* S U B R O U T I N E EREE R R SRR SRS EEEEE SRS E S
SUBROUTINE test(v,S,n)
IMPLICIT NONE
include 'sms.h'

INTEGER n,il, i3

DOUBLE PRECISION v(5005),S
il=int(n)

v(2)=0d0

DO i3=1,il

v(2)=dcos(v(2))

ENDDO

S=v(2)

END

The "in-cell" form by default assignes the random signature to S at the beginning and at the end of the loop, thus gives
correct result.

248 AceGen code generator

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[S$$], Integer[nS]];
n k SMSInteger[n$$];
Sa0;
SMSDo [
S4Cos[S];
+ {i, 1, n, 1, S}];
SMSExport[S, S$$];
SMSWrite["test"];
FilePrint["test.f"]

File: test.f Size: 863
Methods No.Formulae No.Leafs
test 4 15

lhdkkhhhhhhhkhdhhhdhhhhhhhdhhhdhhhdhhhhhhhdhhddhhhdhrddrrdhrddrrdrrddr

!* AceGen 2.502 Windows (24 Nov 10) *
1 * Co. J. Korelc 2007 25 Nov 10 12:55:47%*
IEEEEE SRR EEEEEEEEEE R R R SRR R R R R R R R R R EEEEEEEEEEEEEEEREEEEREREEEEEES]
User : USER

Evaluation time : 0s Mode : Optimal
Number of formulae : 4 Method: Automatic
Subroutine : test size :15

Total size of Mathematica code : 15 subexpressions

Total size of Fortran code : 297 bytes

!******************* S U B R O U T I N E **%kkkkkhkhkhkhkhhhhhhhhhkrk
SUBROUTINE test(v,S,n)
IMPLICIT NONE
include 'sms.h'

INTEGER n,il,i3

DOUBLE PRECISION v(5005),S
il=int(n)

v(2)=0d0

DO i3=1,1il

v(2)=dcos(v(2))

ENDDO

S=v(2)

END

Example 4: How to use variables defined inside the loop outside the loop?

Only the multi-valued variables (introduced by the 4 or 4 command) can be used outside the loop. The use of the single-
valued variables (introduced by the F or + command) that are defined within loop outside the loop will result in
Variables out of scope error.

AceGen code generator 249

Here the variable X is defined within the loop and used outside the loop.

Incorrect formulation

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[S$$], Integer[nS]];
n k SMSInteger[n$$];
S10;
SMSDo [

X31Cos[S];

S4S+X;

, {i, 1, n, 1, {S}}

1:

YE X2;

Some of the auxiliary variables
in expression are defined outside
the scope of the current position.

Module: test Description: Error in user input parameters for function: ¢

2
Input parameter: 1 X Current scope: {}
Misplaced variables :

ﬁl = $V[4, 1] Scope: Do[ﬂ, 1, ﬂ, 1}

Events: 0
Version: 3.001 Windows (7 Mar 11) (MMA 7.)
See also: AuxiliaryVariables AceGen Troubleshooting

SMC::Fatal : System cannot proceed with the evaluation due to the fatal error in k.

SAborted

Correct formulation for "in-cell" form

<< AceGen";
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[S$$], Integer[n$$]];
n k SMSInteger[n$$];
Sa0;
SMSDo [

XaCos[S];

S4S+X;

, {i, 1, n, 1, {S}, {S, X}}

1:

YE Xz;

250 AceGen code generator

Correct formulation for "cross-cell" form

<< AceGen" ;
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real[S$$], Integer[nS]];
n £ SMSInteger[n$$];
Sa0;
SMSDo[i, 1, n, 1, S];
X 1Cos[S];
S4S+X;
SMSEndDo [S, X];
YE X2;

SMSEndDo

See: SMSDo.

SMSReturn

SMSReturn[] = SMSVerbatim["C"—>"return;" ,
"Fortran"—>"return", "Mathematica"—>"Return[Null, Module];"]
(see Mathematica command Return)

SMSBreak[] = SMSVerbatim["C"—>"break;" , "Fortran"—>"exit", "Mathematica"—>"Break[];"]
(see Mathematica command Break)

SMSContinue[] = SMSVerbatim["C"—>"continue;" , "Fortran"—>"cycle", "Mathematica"—>"Continue[];"
(see Mathematica command Continue)

SMSBreak

SMSReturn[] = SMSVerbatim["C"—>"return;" ,
"Fortran"—>"return", "Mathematica"—>"Return[Null, Module];"]
(see Mathematica command Return)

SMSBreak[] = SMSVerbatim["C"—>"break;" , "Fortran"—>"exit", "Mathematica"—>"Break[];"]
(see Mathematica command Break)

SMSContinue[] = SMSVerbatim["C"—>"continue;" , "Fortran"—>"cycle", "Mathematica"—>"Continue[];"
(see Mathematica command Continue)

AceGen code generator 251

SMSContinue

SMSReturn[] = SMSVerbatim["C"—>"return;" ,
"Fortran"—>"return", "Mathematica"—>"Return[Null, Module];"]
(see Mathematica command Return)

SMSBreak[] = SMSVerbatim["C"—>"break;" , "Fortran"—>"exit", "Mathematica"—>"Break[];"]
(see Mathematica command Break)

SMSContinue[] = SMSVerbatim["C"—>"continue;" , "Fortran"—>"cycle", "Mathematica"—>"Continue[];"
(see Mathematica command Continue)

Manipulating notebooks

SMSEvaluateCellsWithTag

SMSEvaluateCellsWithTag[tag] find and evaluate all
notebook cells with the cell tag tag

SMSEvaluateCellsWithTag[tag,"Session"] find and reevaluate notebook cells with the cell tag
tag where search is limited to the cells that has
already been evaluated once during the session

option name description default value

"CollectInputStart" start the process of collecting the unevaluated False
contents of all the notebook cells evaluated by the
SMSEvaluateCellsWithTag command during the session
(by default the SMSInitialize restarts the process)

"RemoveTag" remove the tag fag from the False
cells included into recreated notebook

"CollectInput" on False temporarily suspends the process of collecting True
cells for the current SMSEvaluateCellsWithTag call

Options for SMSEvaluateCellsWithTag command.

Cell tags are used to find single notebook cells or classes of cells in notebook. Add/Remove Cell Tags opens a dialog
box that allows you to add or remove cell tags associated with the selected cell(s). Mathematica attaches the specified
cell tag to each of the selected cells. The cell tags are not visible unless Show Cell Tags in the Find menu is checked.
To search for cells according to their cell tags, you can use either the Cell Tags submenu or the Find in Cell Tags
command. SMSEvaluateCellsWithTag command finds and evaluates all cells with the specified tag.

See also: Advanced AceShare library , Solid, Finite Strain Element for Direct and Sensitivity Analysis

Example:

CELLTAG
Print["this is cell with tag CELLTAG"]

this is cell with tag CELLTAG

252 AceGen code generator

<<AceGen";

SMSInitialize["test", "Language" -> "C"];
SMSModule["subl"];
SMSEvaluateCellsWithTag["CELLTAG"];

[0-0] Include Tag : CELLTAG (2 cells found, 1 evaluated)

this is cell with tag CELLTAG

SMSRecreateNotebook

SMSRecreateNotebook[] creates a new notebook that includes unevaluated contents
of all the notebook cells that were evaluated by the
SMSEvaluateCellsWithTag command during the session

option name description default value
"File" notebook file name current session name
"Head" list of additional Cells included at the head of the notebook {}

"Close" close notebook after creation False

plions for SMSRecreateNotebook command.

See also: Advanced AceShare library

SMSTaglf

SMSTaglf[condition, t, f] tis evaluated and included unevaluated into recreated notebook
if condition yields True and f if condition yields False
(True or False value has to be assigned to condition before
the corresponding SMSEvaluateCellsWithTag call !!!)

See also: Advanced AceShare library

SMSTagSwitch

SMSTagSwitch[expr, evaluates expr then compares it with each of the form; in turn,
Sformy value; ,form, value,,...] evaluating and returning the value;

corresponding to the first match found nad including

the unevaluated value; into recreated notebook

See also: Advanced AceShare library

AceGen code generator 253

SMSTagReplace

SMSTagReplace[eval, include] evaluates eval but includes
unevaluated include into recreated notebook

SMSTagEvaluate[exp] evaluates exp and includes evaluated exp into recreated notebook

See also: Advanced AceShare library
Debugging

SMSSetBreak

See Run Time Debugging

SMSLoadSession
See Run Time Debugging

SMSClearBreak
See Run Time Debugging

SMSActivateBreak

See Run Time Debugging

Random Signature Functions

SMSAbs

SMSAbs[exp] absolute value of exp

The result of the evaluation of the SMSAbs function is an unique random value. The SMSAbs should be used instead of
the Mathematica’s Abs function in order to reduce the possibility of incorrect simplification and to insure proper
automatic differentiation.

See also: Expression Optimization

SMSSign

SMSSign[exp] -1, 0 or 1 depending on whether exp is negative, zero, or positive

The result of the evaluation of the SMSSign function is an unique random value. The SMSSign should be used instead
of the Mathematica’s Sign function in order to reduce the possibility of incorrect simplification and to insure proper

254 AceGen code generator

automatic differentiation.

See also: Expression Optimization

SMSKroneckerDelta

SMSKroneckerDelta[i, j] 1 or O depending on whether i is equal to j or not

The result of the evaluation of the SMSKroneckerDelta function is an unique random value. The SMSKroneckerDelta
should be used in order to reduce the possibility of incorrect simplification and to insure proper automatic differentia-
tion.

See also: Expression Optimization

SMSSqrt

SMSSqrt[exp] square root of exp

The result of the evaluation of the SMSSqrt function is a unique random value. The SMSSqrt should be used instead of
the Mathematica’s Sqrt function in order to reduce the possibility of incorrect simplification and to insure proper
automatic differentiation.

See also: Expression Optimization

SMSMin

SMSMin[expl,exp2] = Min[expl,exp2]
SMSMax

SMSMax[expl,exp2] = Max[expl,exp2]
SMSRandom

SMSRandom[] random number on interval [0,1] with
the precision SMSEvaluatePrecision

SMSRandom[i,j] random number on interval [i,j] with
the precision SMSEvaluatePrecision

SMSRandom[i] gives random number from the interval [0.9xi ,1.1xi]
SMSRandom[i_List] = Map[SMSRandom[H]&, 1]

See also: Expression Optimization

AceGen code generator 255

General Functions

SMSNumberQ

SMSNumberQ[exp] gives True if exp is a real number and False if the results of the evaluation is N//

SMSPower

SMSPower[x,y] =xY
SMSPower[x,y,"Positive"] = x¥ under assumption that x>0

SMSPower[x,y,"NonNegative"] = x¥ under assumption that x=0

SMSTime

SMSTime[] returns number of seconds elapsed since midnight (00:00:00),
January 1,1970, coordinated universal time (UTC)

SMSUnFreeze

SMSUnFreeze[exp] first search exp argument for all auxiliary variables that have
been freezed by the SMSFreeze command and then replace any
appearance of those variables in expression exp by its definition

The SMSUnFreeze function searches the entire database. The Normal operator can be used to remove all special object
(SMSFreezeF , SMSExternalF, ...) from the explicit form of the expression.

Linear Algebra

SMSLinearSolve

See Linear Algebra

SMSLUFactor

See Linear Algebra

SMSLUSolve

See Linear Algebra

256

AceGen code generator

SMSFactorSim

See Linear Algebra

SMSinverse

See Linear Algebra

SMSDet

See Linear Algebra

SMSKrammer

See Linear Algebra

Tensor Algebra

SMSCovariantBase

See Tensor Algebra

SMSCovariantMetric

See Tensor Algebra

SMSContravariantMetric

See Tensor Algebra

SMSChristoffell1

See Tensor Algebra

SMSChristoffell2

See Tensor Algebra

SMSTensorTransformation

See Tensor Algebra

AceGen code generator

257

SMSDCovariant

See Tensor Algebra

Mechanics of Solids

SMSLameToHooke

SMSLameToHooke[A,u] transform Lame's constants A, u to Hooke's constants E, v
SMSHookeToLame[E, v] transform Hooke's constants E, v to Lame's constants A, u
SMSHookeToBulk[E,v] transform Hooke's constants E, v to shear modulus G and bulk modulus «

SMSBulkToHooke[G «] transform shear modulus G and bulk modulus « to Hooke's constants E, v

ransformations of mechanical constants in mechanics of solids.

This transforms Lame's constants A, u to Hooke's constants E, v. No simplification is preformed!
SMSLameToHooke [A, u] // Simplify

L(3A+2) A

{ A+ U ,2()\+u)}

SMSHookeToLame

SMSLameToHooke[A,u] transform Lame's constants A, u to Hooke's constants E, v

SMSHookeToLame[E, v] transform Hooke's constants E, v to Lame's constants A, u
SMSHookeToBulk[E,v] transform Hooke's constants E, v to shear modulus G and bulk modulus «
SMSBulkToHooke[G,k] transform shear modulus G and bulk modulus « to Hooke's constants E, v

ransformations of mechanical constants in mechanics of solids.

This transforms Lame's constants A, u to Hooke's constants E, v. No simplification is preformed!
SMSLameToHooke [A, u] // Simplify

L3 A+2u) 2

{ A+ U ,2()\4—/,()}

SMSHookeToBulk

SMSLameToHooke[A,u] transform Lame's constants A, u to Hooke's constants E, v

SMSHookeToLame[E, v] transform Hooke's constants E, v to Lame's constants A, u
SMSHookeToBulk[E,v] transform Hooke's constants E, v to shear modulus G and bulk modulus «
SMSBulkToHooke[G,k] transform shear modulus G and bulk modulus « to Hooke's constants E, v

ransformations of mechanical constants in mechanics of solids.

258 AceGen code generator

This transforms Lame's constants A, u to Hooke's constants E, v. No simplification is preformed!

SMSLameToHooke [, u] // Simplify

{u<3x+2u) 2

A+ U 2(A+u)}

SMSBulkToHooke

SMSLameToHooke[A,u] transform Lame's constants A, u to Hooke's constants E, v
SMSHookeToLame[E, v] transform Hooke's constants E, v to Lame's constants A, u
SMSHookeToBulk[E,v] transform Hooke's constants E, v to shear modulus G and bulk modulus «

SMSBulkToHooke[G] transform shear modulus G and bulk modulus « to Hooke's constants E, v

ransformations of mechanical constants in mechanics of solids.

This transforms Lame's constants A, u to Hooke's constants E, v. No simplification is preformed!

SMSLameToHooke [, u] // Simplify

I

{u<3/\+2u) A }
A+ U 2 (A+u)

SMSPlaneStressMatrix

SMSPlaneStressMatrix[E, v] linear elastic plane strain constitutive matrix for the Hooke's constants E, v

SMSPIlaneStrainMatrix[E, v] linear elastic plane stress constitutive matrix for the Hooke's constants E, v

ind constitutive matrices for the Tinear elastic formulations in mechanics of solids.

This returns the plane stress constitutive matrix. No simplification is preformed!

SMSPlaneStressMatrix[e, v] // MatrixForm

:vz i:z 0
197:2 1fev2 0
e
0 2 (1+v)
SMSPIlaneStrainMatrix

SMSPlaneStressMatrix[E, v] linear elastic plane strain constitutive matrix for the Hooke's constants E, v

SMSPIlaneStrainMatrix[E, v] linear elastic plane stress constitutive matrix for the Hooke's constants E, v

ind constitutive matrices for the Tinear elastic formulations in mechanics of solids.

AceGen code generator

259

This returns the plane stress constitutive matrix. No simplification is preformed!

SMSPlaneStressMatrix[e, v] // MatrixForm

e ev
1-v2 1-v2
ev e
1-v2 1-v2

SMSEigenvalues

SMSEigenvalues[matrix] create code sequence that calculates the eigenvalues

of the third order matrix and return the vector of 3 eigenvalues

All eigenvalues have to be real numbers. Solution is obtained by solving a general characteristic polynomial. Ill-
conditioning around multiple zeros might occur.

SMSMatrixExp

SMSMatrixExp[M] create code sequence that calculates exponential of the 3x3 matrix

option name

default value

"Order"

"Module"

"Derivatives"

Infinity

False

Infinity = analytical solution
(all eigenvalues of the matrix have to be real numbers.)

r_Integer = Taylor series expansion of order r (arbitrary matrix)

€ Real =

. . MK . .
Taylor series expansion truncated when ”F ||<e (arbitrary matrix)

False = generated code is included directly into current module
True = generated code is included as separate module

Active only when "Module"—->True.
0 = derivatives are not supported
1 = generated module includes the

.. . . AExp (M
definition of the first order derivatives (L())

oM

ptions for SMSMatrixExp.

SMSinvariantsl

SMSInvariantsl[matrix] 1, 1,, 15 invariants of the third order matrix

SMSInvariantsJ[matrix] J;,J,,J3 invariants of the third order matrix

260 AceGen code generator

SMSinvariantsJ

SMSInvariantsI[matrix] 1y, 15, I3 invariants of the third order matrix

SMSInvariantsJ[matrix] J;,J,,J3 invariants of the third order matrix

MathLink Environment

SMSinstallMathLink

See MathLink, Matlab Environments

SMSLinkNoEvaluations

See MathLink, Matlab Environments

SMSSetLinkOptions

See MathLink, Matlab Environments

Finite Element Environments

SMSTemplate

SMSTemplate[options] initializes constants that are needed
for proper symbolic—numeric interface
for the chosen numerical environment

The general characteristics of the element are specified by the set of options options. Options are of the form
"Element_constant"->value (see also Template Constants for list of all constants). The SMSTemplate command must
follow the SMSInitialize commands.

See also Template Constants section for a list of all constants and the Interactions Templates-AceGen-AceFEM section
to see how template constants relate to the external variables in AceGen and the data manipulation routines in AceFEM.

This defines the 2D, quadrilateral element with 4 nodes and 5 degrees of freedom per node.

SMSTemplate["SMSTopology" - "Q1", "SMSDOFGlobal" - 5];

SMSStandardModule

SMSStandardModule[code] start the definition of the user subroutine
with the default names and arguments

Generation of standard user subroutines.

AceGen code generator 261

codes for the user description default

defined subroutines subroutine
name

"Tangent and residual" standard subroutine that returns the tangent matrix and "SKR"

residual for the current values of nodal and element data

"Postprocessing" standard subroutine that returns postprocessing "SPpP"
quantities (see Standard user subroutines)

"Sensitivity pseudo—load" standard subroutine that returns the sensitivity pseudo— "SSE"
load vector for the current sensitivity
parameter (see Standard user subroutines)

"Dependent sensitivity" standard subroutine that resolves sensitivities "SHI"
of the dependent variables defined at the
element level (see Standard user subroutines)

"Residual" standard subroutine that returns residual for "SRE"
the current values of the nodal and element data

"Nodal information" standard subroutine that returns position of the "PAN"
nodes at current and previous time step and normal
vectors if applicable (used for contact elements)

"Tasks" perform various user defined tasks that require assembly "Tasks"
of the results over the whole or part of the mesh.
User subroutine "Tasks" is used for the communication
between the AceFEM environment and the
finite element and it should not be used for
subroutines that are local to the element code.
The ordinary subroutines local to the element code can be
generated using SMSModule and SMSCall commands.
(see Standard user subroutines, User Defined Tasks)

"User n" n —th user defined system subroutine (low— "Usern"
level system feature intended to be used by advanced users)

tandard set of user subroutines.

option
"Name"—>"name" use a given name for the generated subroutine insted

of defult name (for the default names see table below)
"Additional Arguments"—> extends the default set of input/output arguments
{argl,arg2,..} (see table below) by the given list of additional arguments

(for the syntax of the additional arguments see SMSModule)

Options for SMSStandardModule.

There is a standard set of input/output arguments passed to all user subroutines as shown in the table below. The
arguments are in all supported source code languages are passed "by address", so that they can be either input or output
arguments. The element data structures can be set and accessed from the element code as the AceGen external vari-
ables. For example, the command SMSReal[nd$$(i,"X",1]] returns the first coordinate of the i-th element node. The
data returned are always valid for the current element that has been processed by the FE environment.

262 AceGen code generator

parameter description

es$$[...] element specification data structure (see Element Data)
ed$$[...] element data structure (see Element Data)

ns$$[1,...], ns$$[2....1...., node specification data structure

ns$$[SMSNoNodes,. .] for all element nodes (see Node Data)

nd$$[1,...], nd$$[2....1, nodal data structure for all element nodes (see Node Data)

...,nd$$[SMSNoNodes, ..]

idata$$ integer type environment variables
(see Integer Type Environment Data)

rdata$$ real type environment variables
(see Real Type Environment Data)

he standard set of input/output arguments passed to all user subroutines.

Some additional I/O arguments are needed for specific tasks as follows:

user subroutine argument description
"Tangent and residual" p$$[NoDOFGlobal] element residual vector
$$$[NoDOF Global NoDOF Global] element tangent matrix
"Postprocessing” gpost$$[NolntPoints NoGPostData) integration point post—
processing quantities
npost$$[NoNodes NoNPostData] nodal point post—
processing quantities
"Sensitivity pseudo—load" p$$[NoDOFGlobal] sensitivity pseudo—load vector
"Dependent sensitivity" - -
"Tangent" s$$[NoDOFGlobal NoDOF Global] element tangent matrix
"Residuum" p$$[NoDOFGlobal] element residual vector
"Nodal information" d$$[problem dependent , 6] {{xt1 Nl ,xﬁ),y[f,z]f},{xtz ,ytz...},...}
"Tasks" Task$$ see User Defined Tasks,
TasksData$$[5] Standard user subroutines, SMTTask

IntegerInput$$[TasksData$$[2]]
Reallnput$$[TasksData$$[3]]
IntegerOutput$$[TasksData$$[4]]
RealOutput$$[TasksData$$[5]]

"User n" - -

Additional set of input/output arguments.

The user defined subroutines described here are connected with a particular element. For the specific tasks such as
shape sensitivity analysis additional element independent user subroutines my be required (e.g. see Standard user
subroutines).

All the environments do not supprot all user subroutines. In the table below the accessibility of the user subroutine
according to the environment is presented. The subroutine without the mark should be avoided when the code is
generated for a certain environment.

AceGen code generator

263

user subroutine AceFEM FEAP ELFEN | ABAQUS
"Tangent and residual" (] (] ((
"Postprocessing"]]

"Sensitivity pseudo—load" [) [) (]

"Dependent sensitivity" (] (] {

"Tasks" ®

"User n" ®

This creates the element source with the environment dependent supplementary routines and the user defined subroutine "Tangent
and residual". The code is created for the 2D, quadrilateral element with 4 nodes, 5 degrees of freedom per node and two material
constants. Just to illustrate the procedure the X coordinate of the first element node is exported as the first element of the element
residual vector p$$. The element is generated for AceFEM and FEAP environments. The AceGen input and the generated codes are

presented.

<< AceGen" ;

SMSInitialize["test", "Environment" -> "AceFEM"];

SMSTemplate["SMSTopology" -» "Q1", "SMSDOFGlobal" - 5,
"SMSGroupDataNames" - {"Constant 1", "Constant 2"}];

SMSStandardModule["Tangent and residual"];

SMSExport [SMSReal[nd$$[1, "X", 111, p$$[1]1];

SMSWrite[];

Method : SKR 1 formulae, 9 sub-expressions

[0] File created : teSt e C size : 3570

FilePrint["test.c"]

<< AceGen";

SMSInitialize["test", "Environment" -> "FEAP"];

SMSTemplate["SMSTopology" -» "Ql1", "SMSDOFGlobal" -» 5,
"SMSGroupDataNames" -» {"Constant 1", "Constant 2"}];

SMSStandardModule["Tangent and residual"];

SMSExport [SMSReal [nd$$[1, "X", 1]], p$S[11];

SMSWrite[];

Method : SKR].O 1 formulae, 8 sub-expressions

(0] File created : LSt . f size : 1121

264 AceGen code generator

SMSFEAPMake

SMSFEAPMake[source] compiles source.f source file
and builds the FEAP executable program

reate FEAP executable.

The paths to FEAP's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-
1j.si/symech/user/install.txt.

SMSFEAPRun

SMSFEAPRun[input] runs FEAP with the input as input data file

un analysis.

AceGen code generator

265

option name default value
"Debug" False pause before exiting the FEAP executable
"Splice" False splice file with the given file
name into an FEAP input file input
(it takes text enclosed between < xandx >in the file,
evaluates the text as Mathematica input,
and replaces the text with the resulting Mathematica output)
"Output" Automatic name of the FEAP output data file
pfions for SMSFEAPRuUR.

The paths to FEAP's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-

1j.si/symech/user/install .txt.

SMSELFENMake

SMSELFENMake[source] compiles source.f source file

and builds the ELFEN executable program

Create ELFEN executable.

The paths to ELFEN's Visual Studio project have to be set as described in the Install.txt file available at www .fgg.uni-

1j.si/symech/user/install .txt.

SMSELFENRun

SMSELFENRun[input] runs ELFEN with the input as input data file

un analysis.

option name default value

"Debug" False

"Splice" False

"Output" Automatic

pause before exiting the ELFEN executable

splice file with the given file
name into an ELFEN input file input

(it takes text enclosed between < xandx >in the file,
evaluates the text as Mathematica input,

and replaces the text with the resulting Mathematica output)

name of the ELFEN output data file

ptions for SMSELFENRun.

The paths to ELFEN's Visual Studio project have to be set as described in the Install.txt file available at www fgg.uni-

1j.si/symech/user/install .txt.

266

AceGen code generator

SMSABAQUSMake

SMSABAQUSMake[ecode] compiles element source file defined by the element

code ecode and builds the user element object file
(ecode can be a name of the element FORTRAN

source file or anunified element code
that points to the elements in shared libraries)

reate user element object file.

SMSABAQUSRun
SMSABAQUSRun[input] runs ABAQUS with the input as ABAQUS input data file
un analysis.
option name default value
"Debug" False pause before exiting the ABAQUS executable
"Splice" False splice file with the given file
name into an ABAQUS input file input
(it takes text enclosed between <*and« >in the file,
evaluates the text as Mathematica input,
and replaces the text with the resulting Mathematica output)
"UserElement" False run ABAQUS with the specified by element code ecode

Options for SMSABAQUSRun.

Additional definitions

idata$$

See: Integer Type Environment Data

rdata$$

See: Real Type Environment Data

ns$$

See: Node Specification Data

nd$$

See: Node Data

AceGen code generator

267

es$$

See: Domain Specification Data

ed$$

See: Element Data

SMSTopology

See: Template Constants - SMSTopoIogy|

SMSNoDimensions

see: Template Constants — SMSNoDimensions|

SMSNoNodes

See: Template Constants - SMSNoNodes|

SMSDOFGilobal

see: Template Constants — SMSDOFGIobaI|

SMSNoDOFGIobal

See: Template Constants - SMSNoDOFGIobaI|

SMSNoAIIDOF

see: Template Constants — SMSNoAIIDOF|

SMSSymmetricTangent

See: Template Constants - SMSSymmetricTangent|

268

AceGen code generator

SMSGroupDataNames

See: Template Constants

- SMSGroupDataNames|

SMSDefaultData

See: Template Constants

— SMSDefauItData|

SMSGPostNames

See: Template Constants — SMSGPostNames|
SMSNPostNames

See: Template Constants - SMSNPostNames|
SMSNoDOFCondense

See: Template Constants — SMSNoDOFCondense|
SMSNoTimeStorage

See: Template Constants - SMSNoTimeStorage|

SMSNoElementData

See: Template Constants

— SMSNoEIementData|

SMSResidualSign

See: Template Constants

- SMSResiduaISign|

SMSSegments

AceGen code generator

269

See: Template Constants

— SMSSegments

SMSSegmentsTriangulation

See: Template Constants — SMSSegmentsTriangulation

SMSNodeOrder

see: Template Constants

— SMSNodeOrder|

ELFEN$NoStress

See: Template Constants

— ELFEN$NoStress|

ELFENS$NoStrain

See: Template Constants

— ELFEN$NoStrain |

ELFEN$NoState

See: Template Constants

— ELFEN$NoState |

ELFENS$ElementModel

See: Template Constants

— ELFEN$EIementModeI|

FEAP$ElementNumber

See: Template Constants

— FEAP$EIementNumber|

SMSReferenceNodes

see: Template Constants

— SMSReferenceNodes|

270

AceGen code generator

SMSNoNodeStorage

See: Template Constants — SMSNoNodeStorage|

SMSNoNodeData

See: Template Constants - SMSNoNodeData|

SMSDefaultintegrationCode

See: Template Constants — SMSDefauItIntegrationCode|

SMSAdditionalNodes

See: Template Constants - SMSAdditionaINodes|

SMSNodelD

See: Template Constants — SMSNodeID|

SMSAdditionalGraphics

See: Template Constants - SMSAdditionaIGraphics|

SMSSensitivityNames

See: Template Constants — SMSSensitivityNames|

SMSShapeSensitivity

See: Template Constants — SMSShapeSensitivity|

SMSMainTitle

AceGen code generator

271

see: Template Constants — SMSMainTitIe|

SMSSubTitle

See: Template Constants - SMSSubTitIe|

SMSSubSubTitle

see: Template Constants — SMSSubSubTitIe|

SMSMMAInitialisation

See: Template Constants - SMSMMAInitiaIisation|

SMSMMANextStep

see: Template Constants — SMSMMANextStep|

SMSMMAStepBack

See: Template Constants - SMSMMAStepBack|

SMSMMAPrelteration

see: Template Constants — SMSMMAPreIteration|

SMSIDataNames

See: Template Constants - SMSIDataNames|

SMSRDataNames

see: Template Constants — SMSRDataNames|

272

AceGen code generator

SMSBibliography

See: Template Constants

- SMSBiinography|

SMSNoAdditionalData

See: Template Constants

— SMSNoAdditionaIData|

SMSUserDataRules

See: Template Constants

— SMSUserDataRuIes|

SMSCharSwitch

See: Template Constants

— SMSCharSwitch|

SMSIntSwitch

See: Template Constants

— SMSIntSwitch |

SMSDoubleSwitch

See: Template Constants

— SMSDoubIeSwitch|

SMSCreateDummyNodes

See: Template Constants

- SMSCreateDummyNodes|

SMSPostlterationCall

See: Template Constants

— SMSPostlterationCall |

SMSPostNodeWeights

AceGen code generator 273

see: Template Constants — SMSPostNodeWeights|

SMSCondensationData

See: Template Constants - SMSCondensationData|

SMSDataCheck

see: Template Constants — SMSDataCheck|

